IEEE SW Test Workshop Semiconductor Wafer Test Workshop

Ken Karklin Touchdown Technologies Jerry Broz, Ph. D. – SWTW General Chair Bill Mann - SWTW Chair Emeritus & SWTW Program Committee

Bond Pad Damage Tutorial

Probe Pad Damage

- Damage from Wafer Sort
- The Problem and Analysis
- Initial Pad Damage Control
- Low k Dielectrics and Copper Metalization
- Controlling Damage with Probe Card Technologies
- Using the Prober to Control the Probing Process

Introduction

- Probe card technologies have become advanced; BUT, the basics of wafer sort really have not changed.
- <u>ALL</u> probe technologies have a contact area substantially harder than the pads or solder balls of the device.
- "Contact and slide" is CRITICAL to break surface oxide(s), but results in localized plastic deformation, i.e. a probe mark.
- Volume of material displaced and/or transferred is a complex function of dynamic contact mechanics, metallic interactions, frictional effects, and other tribological properties.

Bond Pad Damage Overview

What is bond pad damage?

How do we define it?

How do we measure it?

Roadmap gap assessment and industry trends

Where can I read more on bond pad damage?

Bond Pad Damage

• Excessively large scrub mark affect ball bond adhesion and cause long term reliability issues.

Ball bond on probed area

Pad size and pitch continue to shrink

Pad opening shown is 29 x 29 microns - running out of room!

McKnight, et al., SWTW-2007

Probe Mark Anatomy

- Probe Mark
 - Area
 - Volume
- Pile-up
 - Area
 - Volume

- Probe Mark Depth
- Pile-up Height

Background – Area Effects

- Pad damage due to probe has been positively correlated to bondability issues.
 - Reduced ball shear strength and wire pull strength
 - Increased NSOP (no stick on pad) and LBB (lifted ball bond)

Sources ... Tran, et al., ECTC -2000 Tran, et al., SWTW-2000 Langlois, et al, SWTW-2001 Hotchkiss, et al., ECTC-2001 Hothckiss, et al., IRPS-2001 Among others ...

Area Effects Are Not Enough !

A probe mark can have a relatively small area of damage, but exceed the critical allowable depth.

- % Area Damage = 8.8 which is within limits
- Depth = 10000Å which is excessively deep

Miller, et al., SWTW-2007

Background – Height Effects

- Pad material pile-up has also been correlated to bondability issues.
 - Reduced ball shear strength and wire pull strength
 - Increased NSOP (no stick on pad) and LBB (lifted ball bond)

Sources ... Langlois, et al, SWTW-2001 Among others ...

Background – Depth Effects

- Excessively deep probe marks can cause ...
 - Underlying layer damage (low-k dielectric, circuitry under bond pads, and aluminum capped copper pads)
 - Bondability and long term reliability issues

Many steps are needed to assess cracks.

Sources ...

Hartfield, et al, SWTW-2003 Martens, et. al., SWTW-2003 Hartfield, et al., SWTW-2004 Stillman, et al., SWTW-2005 Among others ...

Probe Mark 3D Cross Section

- From the wafer sort standpoint ...
 - 3D imaging facilitates probe mark visualization
 - Displaced volume and depth can be correlated to key sort parameters, e.g. z-stage speed, overtravel, probe force, cracking, punch-through, etc.

Courtesy of Hyphenated Systems, LLC.

Bonding Intermetallic Formation

- Insufficient aluminum-gold intermetallic form at the deepest portion of the probe mark.
- Bonding to pads with > 25% probe damage produces a higher incidence of lifted balls during production.

Regions of little or no intermetallic formation and voids match the locations of the probe marks

Hidden Damage

- Probe induced cracking of underlying structures is an ongoing test industry issue.
- Damage to Cu/Low-k devices during fabrication, probe, and assembly is a long-term reliability concern
 - Low-k materials tend to have lower modulus, hardness, and fracture toughness
 - Low modulus and a extremely small fracture toughness equals a high probability of cracking.
- IBM: probe damage occurs with SiLKlow-k dielectric (ISTFA 2001)
 - "The intrinsic inability to control tip contact forces with conventional tungsten tip probing techniques results in damage to the Cu interconnects and deformation of the underlying low k dielectric film."

Assessing the Damage

- Traditional depth, volume, and height measurements are time consuming and can have long cycle times.
 - Probing under different conditions
 - Wafers must be scrapped
 - Careful wafer sectioning
 - Sample preparation and de-processing
 - Electron-based microscopy

Hidden Deformation and Damage

Hwang, et al., SWTW-2006

Assessing the Hidden Damage

 Aluminum layer was removed by deprocessing to reveal micro-scratches and cracking.

Evaluation showed the probability of probing damage:
 – TaN Crack > Underlying Deformation > Pad Void

OD= 65µm TD=6 times

Dielectric Cracking DoE

4 Factors 3 Levels: 34

Response:

- 1. Over-travel
- 2. # of probe touchdowns
- 3. Dielectric thickness

FAB DOE - 9 Wafers

4. Metal Thickness

1. # of die (out of 20) with cracks

Sort DOE per wafer

				-
Dielectric Thk	Metal Thk		Over-Travel	Touchdown
-10%	-10%		4mil	1X
-10%	POR		4mil	2X
-10%	+20%	\land	4mil	4X
POR	-10%	\mathbf{N}	6mil	1X
POR	POR		6mil	2X
POR	+20%		6mil	4X
+20%	-10%		8mil	1X
+20%	POR		8mil	2X
+20%	+20%		8mil	4X

Liu, et al., ECTC-2005

Test Results... Probe test experiment

Summary	of	Fit
---------	----	-----

RSquare	0.737006
RSquare Adj	0.699436
Root Mean Square Error	4.630451
Mean of Response	5.703704
Observations (or Sum W	gts) 81

Pareto Plot of Estimates	
Term	t Ratio
Overdrive	10.57992
Touchdown	6.50292
(Overdrive-6)"(Touchdown-2.33333)	4.07646
Dielctric thk	-3.82864
(Dielctric thk-31000)*(Overdrive-6)	-2.54484
(Metal Thk-25200)"(Touchdown-2.33333)	1.23299
(Metal Thk-25200)"(Overdrive-6)	-1.12806
Metal Thk	-0.87215
(Dielctric thk-31000)"(Touchdown-2.33333)	-0.67359
(Metal Thk-25200)"(Dielctric thk-31000)	0.42915

- Model shows that Over-travel is the first factor to control the dielectric crack
- Number of touchdowns is also the major factor
- Both OT and touch down may related to hz movement

Assessing the Hidden Damage

- Scrub Depth Correlates with Underlying Damage
- Measurements identified underlying layer deformation risk.

Parameters

Acceptable Scrub Depth

• Monitor the TaN layer integrity of shallow scrubs.

"Fast" 3D Confocal Failure Analysis

Courtesy of Hyphenated Systems, LLC.

Copper Metallization Makes The Problem Even Worse ...

New processes with smaller I/O pads needed smaller and sharper needles; increased chance to punch through the AI pad and expose copper

Exposed copper oxidizes fast and adversely effects the ball bonding

Wire

Exposed copper on I/O pad
Oxidizes causing NSOP

Punch Through

• Exposed copper identified with spectral analysis.

Punch Through

Okay

Controlling the Damage

Industry Requirements

- Continuous shrinkage in pad dimensions
- Thinner pad metal layer moving below 0.7um
- Lower k ILD structures

Probing Challenges

- Minimize yield loss due to
 - Wire-bond reliability from deep scrub and large particles
 - Probing damage at upper metal layers such as cracks

Approaches to Damage Control

- The depth of the probe mark can be controlled with by using alternate probe card technologies
 - Tip shape and probe geometry (various manufacturers)
 - Low force probe cards (various manufacturers)
 - Optimized probe to pad interactions
- Probers can effectively change the z-stage motion just before contact and during overtravel to reduce damage
 - Variable Speed Probing by Accretech®
 - Micro-Touch[™] by Electroglas[®]
 - 3D Probing by Tokyo Electron Limited® (TEL)

Pad Damage Versus Technology

Probe Needle Design Changes

Stillman, et al., SWTW-2003

Tip Geometry Effects

Courtesy of Cascade Microtech and MicroProbe

Reduced Probe Geometry

- Reduce probe tip diameter
- Reduce spring force and overdrive
- Control number of probe passes

Benefits:

- Smaller probe mark
- Minimize probe size and depth

Concerns:

- Probe card fabrication
- Process control
- Reduced card life

Tip Geometry Effects

Cantilever

% Pad Damage

Membrane

Advanced Scrub Sensitivity

Tip Size

Large

Standard

- Macroscopically, punch through level was found to be a direct function of tip pressure
 - Tip area
 - Spring constant
 - Planarity
 - Over travel

Wang, et al., SWTW-2007

Compensating for the Damage

Offsetting the Wire Bond location

At Bond / Assembly

- Plasma clean before wire bonding
- Optimize parameters
- Offset wire bond location away from probe.

Benefits:

Minimize Non Stick Bonds

Concerns:

• Difficult in small geometry

Compensating for the Damage

Elongated or Rectangular Pad Design
 Separate regions allocated for probe and bond

Probe Area

Benefits:

• Separate probe and wire bond

Wire Bond Area Concerns: • May increase die size

Probe Over Passivation (POP)

- Eliminate probe and wire bond interference
- Creates longer bond pad but it DID NOT increase die size
 - Requires 1 mask change
- Eliminate Cu exposure due to heavy probe marks
- Ease of implementation on existing and new Cu technology products

Courtesy of Freescale Semiconductor

Benefits of "POP"

- Creates separate probe and wire bond regions without die size increase
- Totally eliminates problem of punching through to Cu and interacting with wire bond
 - No damage of passivation or Cu after 6 double-touch passes at heavy force and heavy overdrive
 - Achieved significant improvement in NSOP
- New POP probe card specification can include higher spring force for better CRES performance during sort
- Numerous Freescale Cu devices at 50µm and finer pad pitches have switched to POP bond pad design

Prober Operation Performance

- Combination of vertical probe contact at over drive, coupled with horizontal chuck motion to minimize the probe mark damage
- Enabled by Intel, TEL and FormFactor for the MicroSpring[™] card
 - Methodology designed to satisfy stringent requirements for low-k ILD materials
- Resulted in 10:1 reduction of probe force with consistent and low contact resistance performance.

What Steps Can I Take ?

- Can reasonable steps be taken with existing technologies (e.g., an existing probe card and a prober) to reduce pad damage in a cost-effective manner ?
- Is it possible to identify an optimized combination of prober operational settings to reduce the overall area and volumetric probe damage, i.e. disturbed pad area ?

Key Prober Operational Settings

- Number of Touchdowns
 - Single vs. Double
- Overtravel Magnitude
 - Low (50um) vs. Middle (63um) vs. High (75um)
- Undertravel Magnitude
 - Low (0um) vs. Middle (10um) vs. High (20um)
- Pin-Update Execution
 - Abbreviated pin alignment to compensate for thermal movement
 - On vs. Off
- Wafer Chuck Speed
 - Low (6000 um/sec) vs. High (18000 um/sec)
- Chuck Revise Execution
 - Re-zero of the wafer chuck to compensate for thermal movement
 - On vs. Off

Major Contributors to Damage

- Primary Responses for Area and Volume
 - Single vs. Double Touchdown
 - Minimum vs. Maximum Overtravel
- Secondary Responses
 - Wafer chuck speed
 - Undertravel
- The influence of second order factors for fine-tuning the operational parameters can be performed using modeled response data.
- Other contributors for consideration
 - Small sample size effects
 - Operator-induced variability
 - Probe tip diameter variations
 - Probe gram force variations

Best Case Combinations

Modeled response data can be used to investigate the effects of changing one parameter and keeping the other constant.

- Slopes of the lines can give some indication of sensitivity to the change.

Effects of Reprobe on Pad Damage

Intuitively we know the 2D effects of reprobe or multiple probe steps diminish with each touchdown but at what rate?

One model:

$$A_d = \sum_{n=1}^{TD} \frac{1}{n^{-1}} A_s$$

Where:

- A_d disturbed area
- **TD touchdowns**
- a scaling coefficient
- A_s scrub mark 2D size

Pad Damage: Actual Versus Model

The goal of the design of experiment would be to hold everything constant and only change the number of touchdowns.

DoE

- multiple wafers
- one probe card
- one test cell
- one operator
- same setup each time
- fully disturbed wafers

- fully disturbed probe card
- seven cumulative touchdowns

Millions of scrub marks!

Actual Versus Model: Results

Scrub Sensitivity Analysis DOE Results: "Scrub Depth" Parete Plot

Pareto Plot of Transformed Estimates **Orthog Estimate** Term -15.99093 Tip treatment[B] -10.28125Tip size[Large] 6.95375 TD count[Five] -3.80436 Tip treatment[A] Tip size[Large]*Tip treatment[B] -2.77981Tip shape[1]*Tip treatment[B] 2.66668 -2.59187TD count[Five]*Tip treatment[A] -2.19958Tip size[Large]*TD count[Five] -2.06523 Tip size[Large]*Tip treatment[A] 2.06375 Tip shape[1] TD count[Five]*Tip treatment[B] 1.71031 1.01195 Tip shape[1]*Tip treatment[A] TD count[Five]*Tip shape[1] -0.507920.10375 Tip size[Large]*Tip shape[1]

Significant factors for scrub depth: Tip conditions, tip size, TD count, and Interactions

Scrub Sensitivity Analysis DOE Results: "Scrub Depth" Interaction

Macroscopic, microscopic factors and their interactions all impact scrub depth Wang, et al., SWTW-2007

Scrub Sensitivity Analysis DOE Results: "Prow Height" Pareto Plot

Pareto Plot of Transformed Estimates

TD count, tip conditions, and tip size all contribute to the prow height metric

Scrub Sensitivity Analysis DOE Results: "Prow Height" Interaction Profile

The trends are similar to that of depth metric

Wang, et al., SWTW-2007

Conventional Cantilever Design Considerations

Elbow Displacement	—		—	/	/	—		_
Tip - Elbow Displacement		/	~	/				-
Tip Deflection	—	-	~	/			-	-
Force			-	/		1	/	-
	Tip Angle	Tip Length	Tip Diameter	Over- travel	Beam Angle	Beam Length	Beam Diameter	Taper Length

Design targets for modification to improve crack problem

Reduce beam diameter Increase taper length Increase tip length

Summary

- I/O pad damage has been aggravated by smaller pads, sharper needles, and new process node technologies.
- Changes and improvements to probe card specification have been developed to mitigate some of the problems.
- Significant new probe methods, new probe card technologies, and design and layout tricks are now being implemented.
- Reasonable steps can be taken with "existing" hardware to reduce pad damage in a cost-effective manner.

Acknowledgements

- Special thanks to Dr. Jerry Broz and Bill Mann for their significant contribution!!!
- Thanks to the SWTW Program Committee for their contribution and critique