土壤中重金属污染现状与防治方法

作者:郑喜珅等    文章来源:中国期刊网    点击数:    更新时间:2004-4-19


郑喜珅1,鲁安怀1,高 翔1,赵 谨2,郑德圣2
(1:北京大学地质学系,北京100871;2:中国地质大学材料学院,北京100083)

摘要:文章阐明了土壤重金属污染物来源与分布,同时对国内外土壤重金属污染治理的研究工作做了系统的综述,提出了土壤中重金属污染物防治的环境矿物学新方法,利用环境矿物材料治理土壤重金属污染物的方法,具有成本低、效果好、无二次污染及有用金属可回收利用等优点,展现出广阔的环境矿物学研究与应用前景。并提醒人们要提高土壤质量意识,保护生态环境。
关键词:土壤;重金属污染;治理;防治方法;环境矿物材料;土壤质量
中图分类号:X144        文献标识码:A        文章编号:1008-181X(2002)01-0079-06

 
重金属系指密度4.0以上约60种元素或密度在5.0以上的45种元素。砷、硒是非金属,但是它的毒性及某些性质与重金属相似,所以将砷、硒列入重金属污染物范围内。环境污染方面所指的重金属主要是指生物毒性显著的汞、镉、铅、铬以及类金属砷,还包括具有毒性的重金属锌、铜、钴、镍、锡、钒等污染物。
随着全球经济化的迅速发展,含重金属的污染物通过各种途径进入土壤,造成土壤严重污染。土壤重金属污染可影响农作物产量和质量的下降,并可通过食物链危害人类的健康,也可以导致大气和水环境质量的进一步恶化。因此引起世界各国的广泛重视。目前,世界各国土壤存在不同程度的重金属污染,全世界平均每年排放Hg约1.5万 t、Cu为340万 t、Pb为500万 t、Mn为1500万 t、Ni为100万 t[1]。中国北方大城市的蔬菜基地和部分商品粮基地也存在着不同程度的重金属污染,如北京、天津、西安、沈阳、济南、长春、郑州等地;。
南方相对较轻,如福州、宁波、上海、武汉、成都等地。土壤重金属污染将会造成生态系统的严重破坏。从中国土壤资源状况看,到2000年底中国人均耕地仅为0.1 hm2,而且随着今后中国经济社会的发展如生态退耕、农业结构调整及自然灾害损毁等,土壤资源将进一步减少。因而如何有效地控制及治理土壤重金属的污染,改良土壤质量,将成为生态环境保护工作中十分重要的一项内容。
本文主要从土壤中重金属污染物来源与分布、土壤中重金属污染物的现行治理方法入手,提出土壤中重金属污染物防治的环境矿物学新方法。旨在保护环境,提高土壤的环境质量。  

1  土壤中重金属污染物来源与分布
土壤中重金属的来源是多途径的,首先是成土母质本身含有重金属,不同的母质、成土过程所形成的土壤含有重金属量差异很大。此外,人类工农业生产活动,也造成重金属对大气、水体和土壤的污染。
1.1  大气中重金属沉降
大气中的重金属主要来源于工业生产、汽车尾气排放及汽车轮胎磨损产生的大量含重金属的有害气体和粉尘等。它们主要分布在工矿的周围和公路、铁路的两侧。大气中的大多数重金属是经自然沉降[2]和雨淋沉降进入土壤的。如瑞典中部Falun市区的铅污染[3],它主要来自于市区铜矿工业厂、硫酸厂、油漆厂、采矿和化学工业产生大量废物,由于风的输送,这些细微颗粒的铅,从工业废物堆扩散至周围地区。南京某生产铬的重工业厂[4]铬污染叠加已超过当地背景值4.4倍,污染以车间烟囱为中心,范围达1.5 km2,污染范围最大延伸下限1.38 km。俄罗斯的一个硫酸生产厂[5]也是由工厂烟囱排放造成S、V、As的污染。
公路、铁路两侧土壤中的重金属污染,主要是Pb、Zn、Cd、Cr、Co、Cu的污染为主。它们来自于含铅汽油的燃烧,汽车轮胎磨损产生的含锌粉尘等。它们成条带状分布,以公路、铁路为轴向两侧重金属污染强度逐渐减弱;随着时间的推移,公路、铁路土壤重金属污染具有很强的叠加性。在宁—杭公路南京段[6]两侧的土壤形成Pb、Cr、Co污染晕带,且沿公路延长方向分布,自公路向两侧污染强度减弱。在宁—连一级公路淮阴段[7]两侧的土壤铅含量增高,向两侧含量逐渐降低,且在地表0~30 cm铅的含量较高。在法国索洛涅地区A71号高速公路[8]沿途严重污染重金属Pb、Zn、Cd,其沉降粒子浓度超过当地土壤背景值2~8倍,而公路旁重金属浓度比沉降粒子中高7~26倍。在斯洛文尼亚[9]从居波加到扎各瑞波公路两侧,铅除了分布在公路两侧以外,还受阶地地貌和盛行风的影响,高铅出现在低地,公路顺风一侧铅含量较高。
经过自然沉降和雨淋沉降进入土壤的重金属污染,主要以工矿烟囱、废物堆和公路为中心,向四周及两侧扩散;由城市—郊区—农区,随距城市的距离加大而降低,特别是城市的郊区污染较为严重。此外,还与城市的人口密度、城市土地利用率、机动车密度成正相关;重工业越发达,污染相对就越严重。
此外,大气汞的干湿沉降[10~12]也可以引起土壤中汞的含量增高。大气汞通过干湿沉降进入土壤后,被土壤中的粘土矿物和有机物的吸附或固定,富集于土壤表层,或为植物吸收而转入土壤,造成土壤汞的浓度的升高。
1.2  农药、化肥和塑料薄膜使用
施用含有铅、汞、镉、砷等的农药和不合理地施用化肥,都可以导致土壤中重金属的污染。一般过磷酸盐中含有较多的重金属Hg、Cd、As、Zn、Pb,磷肥次之,,氮肥和钾肥含量较低,但氮肥中铅含量较高,其中As和Cd污染严重[13]。经过对上海地区菜园土地、粮棉地的研究[14],施肥后,Cd的含量从0.134 mg/kg升到0.316 mg/kg,Hg的含量从0.22 mg/kg升到0.39 mg/kg,Cu、Zn 增长2/3。通过新西兰[15]50 a前和现今同一地点58个土样分析,自施用磷肥后,镉从0.39 mg/kg升至0.85 mg/kg。在阿根廷[16]由于传统无机磷肥的施入,进而导致土壤重金属Cd、Cr、Cu、Zn、Ni、Pb的污染。
农用塑料薄膜生产应用的热稳定剂中含有Cd、Pb,在大量使用塑料大棚和地膜过程中都可以造成土壤重金属的污染。
1.3  污水灌溉
污水灌溉一般指使用经过一定处理的城市污水灌溉农田、森林和草地。城市污水包括生活污水、商业污水和工业废水。由于城市工业化的迅速发展,大量的工业废水涌入河道,使城市污水中含有的许多重金属离子,随着污水灌溉而进入土壤。在分布上,往往是靠近污染源头和城市工业区土壤污染严重,远离污染源头和城市工业区,土壤几乎不污染[17]。近年来污水灌溉已成为农业灌溉用水的重要组成部分,中国自60年代至今,污灌面积迅速扩大,以北方旱作地区污灌最为普遍,约占全国污灌面积的90%以上。南方地区的污灌面积仅占6%,其余在西北和青藏[18]。污灌导致土壤重金属Hg、Cd、Cr、As、Cu、Zn、Pb等含量的增加。淮阳污灌区自污灌以来,金属Hg、Cd、Cr、Pb、As等就逐渐增高,1995~1997年已超过警戒级[19]。太原污灌区的重金属Pb、Cd、Cr含量远远超过其当地背景值,且积累量逐年增高[20]。
1.4  污泥施肥
污泥中含有大量的有机质和氮、磷、钾等营养元素,但同时污泥中也含有大量的重金属,随着大量的市政污泥进入农田,使农田中的重金属的含量在不断增高。污泥施肥可导致土壤中Cd、Hg、Cr、Cu、Zn、Ni、Pb含量的增加,且污泥施用越多,污染就越严重,Cd、、Cu、Zn引起水稻、蔬菜的污染;Cd、Hg可引起小麦、玉米的污染;污泥增加,青菜中的Cd、Cu、Zn、Ni、Pb也增加[21]。Anthony[22]研究表明,用城市污水、污泥改良土壤,重金属Hg、Cd、Pb等的含量也明显增加。
1.5  含重金属废弃物堆积
含重金属废弃物种类繁多,不同种类其危害方式和污染程度都不一样。污染的范围一般以废弃堆为中心向四周扩散。通过对武汉市垃圾堆放场[23]、杭州某铬渣堆存区[24]、城市生活垃圾场[25]及车辆废弃场[26]附近土壤中的重金属污染的研究,这些区域的重金属Cd、Hg、Cr、Cu、Zn、Ni、Pb、As、Sb、V、Co、Mn的含量高于当地土壤背景值,重金属在土壤中的含量和形态分布特征受其垃圾中释放率的影响,且随距离的加大重金属的含量而降低。由于废弃物种类不同,各重金属污染程度也不尽相同,如铬渣堆存区的Cd、Hg、Pb为重度污染,Zn为中度污染,Cr、Cu为轻度污染。
1.6  金属矿山酸性废水污染
金属矿山的开采、冶炼、重金属尾矿、冶炼废渣和矿渣堆放等,可以被酸溶出含重金属离子的矿山酸性废水,随着矿山排水和降雨使之带入水环境(如河流等)或直接进入土壤,都可以间接或直接地造成土壤重金属污染。1989年我国有色冶金工业向环境中排放重金属Hg为56 t,Cd为88 t,As为173 t,Pb为226 t[27]。矿山酸性废水重金属污染的范围一般在矿山的周围或河流的下游,在河流中不同河段的重金属污染往往受污染源(矿山)控制,河流同一污染源的下段自上游到下游,由于金属元素迁移能力减弱和水体自净化能力的适度恢复,金属化学污染强度逐渐降低。江西乐安江沽口—中洲[28]由于遭受德兴铜矿的污染,水体及土壤中的重金属Cu、Pb、Zn、Cr含量增高,至鄱阳湖段重金属含量逐渐降低。美国科罗拉多州罗拉多流域[29]受采矿的影响,重金属元素Cd、Zn、Pb、As的浓度,以污染源为最高,之后随着与污染源距离延长而逐渐降低。莱安河[30]重金属污染,来自一个大型铜矿,导致重金属浓度远远超过当地背景值。流域重金属污染随季节变化而异,枯水期重金属的含量明显高于丰水期[31]。河流流速减缓可以导致该流段重金属含量增加[32]。
同一区域土壤中重金属污染物的来源途径可以是单一的,也可以是多途径的。胡永定[33]通过研究徐州荆马河区域土壤重金属污染的成因中指出:Cr、Cu、Zn、Pb是由垃圾施用引起的,As是由农灌引起的,Cd是由农灌和垃圾施用引起的,Hg是各种途径都具备。王文祥[34]通过对山东省耕地重金属元素污染状况的研究说明,工业快速发展地区铅高于农业环境,铅与距公路远近有关。乡镇企业技术、设备落后,原材料利用率低,造成其周边土壤重金属污染相当严重。据贵州1986年的统计,全省乡镇排放汞14.7万kg,土壤中有的地方达56.64 mg/kg,超过未污染土壤的84.5倍。要引起高度重视。
总的来说:工业化程度越高的地区污染越严重,市区高于远郊和农村,地表高于地下,污染区污染时间越长重金属积累就越多,以大气传播媒介土壤重金属污染土壤的具有很强的叠加性,熟化程度越高重金属含量越高。

2  土壤中重金属污染物现行治理方法
关于土壤重金属污染物的研究,国外始于20世纪60~70年代,如澳大利亚、美国、德国等国家对土壤重金属较深入,尤其澳大利亚。我国在1983年对主要类型的土壤环境容量作过初步研究,如提出研究土壤重金属的生态效应、临界含量地带性分异规律和分区等。
当前,世界各国很重视对重金属污染治理方法研究,并开展广泛的研究工作[35~39]。总的来说,目前大致有以下四种治理措施:
2.1  工程治理方法
工程治理是指用物理或物理化学的原理来治理土壤重金属污染。主要有:客土是在污染的土壤上加入未污染的新土;换土是将以污染的土壤移去,换上未污染的新土;翻土是将污染的表土翻至下层;去表土是将污染的表土移去等。如日本富士县神通川流域的痛痛病发源地,就是由于长期食用含镉的稻米而引发的,他们通过研究,去表土15 cm,并压实心土,在连续淹水的条件下,稻米中镉的含量小于0.4 mg/kg;去表土后再客土20 cm,间歇灌溉稻米中镉的含量也不超标,客土超过30 cm,其效果更佳。此外淋洗法是用淋洗液来淋洗污染的土壤;热处理法是将污染土壤加热,使土壤中的挥发性污染物(Hg)挥发并收集起来进行回收或处理;电解法是使土壤中重金属在电解、电迁移、电渗和电泳等的作用下在阳极或阴极被移走。
以上措施具有效果彻底、稳定等优点,但实施复杂、治理费用高和易引起土壤肥力降低等缺点。
2.2  生物治理方法
生物治理是指利用生物的某些习性来适应、抑制和改良重金属污染。主要有:动物治理是利用土壤中的某些低等动物蚯蚓、鼠类等吸收土壤中的重金属;微生物治理是利用土壤中的某些微生物等对重金属具有吸收、沉淀、氧化和还原等作用,降低土壤中重金属的毒性如Citrobacter sp产生的酶能使U、Pb、Cd形成难溶磷酸盐;原核生物(细菌、放线菌)比真核生物(真菌)对重金属更敏感,格兰氏阳性菌可吸收Cd、Cu、Ni、Pb等[44]。植物治理是利用某些植物能忍耐和超量积累某种重金属的特性来清除土壤中的重金属;重金属的植物吸收、淋溶和无效态数量将只依赖于它们的有效态的多少,重金属溶液浓度和它们的土壤的有效态之间关系遵循Freundlich吸附方程[41];超积累植物可吸收积累大量的重金属,目前已发现400多种,超积累植物积累Cr、Co、Ni、Cu、Pb的含量一般在0.1%以上,积累Mn、Zn含量一般在1%以上[40];印度芥菜(Brassica juncea)可吸收Zn、Cd、Cu、Pb等,在Cu为250 mg/kg,Pb为500 mg/kg、Zn为500 mg/kg条件下能生长,在Cd为200 mg/kg出现黄化现象[42];印度芥菜(Brassica juncea)可对Cr6+、Cd、Ni、Zn、Cu富集分别为58,52,31,17和7倍[45];高杆牧草(Agropyron elongatum)能吸收Cu等[43];英国的高山莹属类等,可吸收高浓度的Cu、Co、Mn、Pb、Se、Cd、Zn等。
生物治理措施的优点是实施较简便、投资较少和对环境破坏小,缺点是治理效果不显著。
2.3  化学治理方法
化学治理就是向污染土壤投入改良剂、抑制剂,增加土壤有机质、阳离子代换量和粘粒的含量,改变pH、Eh和电导等理化性质,使土壤重金属发生氧化、还原、沉淀、吸附、抑制和拮抗等作用,以降低重金属的生物有效性。其中沉淀法是指土壤溶液中金属阳离子在介质发生改变(pH值、OH-、SO42-等)时,形成金属沉淀物而降低土壤重金属的污染;如向土壤中投放钢渣,它在土壤中易被氧化成铁的氧化物,对Cd、Ni、Zn的离子有吸附和共沉淀作用,从而使金属固定。在沈阳张士污灌区进行的大面积石灰改良实验表明,每公顷施石灰1500~1875 kg籽实含镉量下降50%[18]。有机质法是指有机质中的腐殖酸能络合重金属离子生成难溶的络合物,而减轻土壤重金属的污染;吸附法是指重金属离子能被膨润土、沸石、粘土矿物等吸附固定,从而降低土壤重金属的污染。
化学治理措施优点是治理效果和费用都适中,缺点是容易再度活化。
2.4  农业治理方法
农业治理是因地制宜的改变一些耕作管理制度来减轻重金属的危害,在污染土壤上种植不进入食物链的植物。主要有:控制土壤水分是指通过控制土壤水分来调节其氧化还原电位(Eh),达到降低重金属污染的目的;选择化肥是指在不影响土壤供肥的情况下,选择最能降低土壤重金属污染的化肥;增施有机肥是指有机肥能够固定土壤中多种重金属以降低土壤重金属污染的措施;选择农作物品种是指选择抗污染的植物和不要在重金属污染的土壤上种植进入食物链的植物;如在含镉100 mg/kg的土壤上改种苎麻,五年后,土壤镉含镉平均降低27.6%[46];因地制宜地种植玉米、水稻、大豆、小麦等,水稻根系吸收重金属的含量占整个作物吸收量的[35]58%~99%,玉米茎叶吸收重金属的含量占整个作物吸收量的20%~40%,玉米籽实吸收量最少,重金属在作物体内分配规律是根>茎叶>籽实[47]。土壤重金属污染也是导致生态系统破坏的重要因素。合理的利用农业生态系统工程措施,也可以保持土壤的肥力,改良和防治土壤重金属污染,提高土壤质量,并能与自然生态循环和系统协调运作。如可以在污染区公路两侧尽可能种树、种花、种草或经济作物(如蓖麻),种植草皮或观赏树木,移栽繁殖,不但可以美化环境,还可以净化土壤;蓖麻可用作肥皂的原料。也可以进行农业改良,即在污染区繁育种子(水稻、玉米),之后在非污染区种植;或种植非食用作物(高梁、玉米),收获后从秸秆提取酒精,残渣压制纤维板,并提取糠醛,或将残渣制作沼气作能源。
农业治理措施的优点是易操作、费用较低,缺点是周期长、效果不显著。

3  土壤中天然矿物治理重金属污染物新方法
土壤的主要矿物组成除粘土矿物外,还存在大量的天然铁锰铝氧化物及氢氧化物、硅氧化物、碳酸盐、有机质硫化物等天然矿物。在国内外关于土壤重金属污染物防治途径研究中,人们一直强调土壤自身的净化能力,但土壤自净化能力离不开土壤中矿物种对重金属的吸附与解吸作用、固定与释放作用,土壤中具体矿物的净化能力才真正体现土壤自身的净化能力和容纳能力。土壤中有毒有害元素含量的高低,并不是直接判定土壤环境质量优劣乃至土壤生态效应的唯一标志,关键问题是要揭示这些重金属在土壤中与各种无机物之间具有怎样的环境平衡关系。在国内外为寻求地下水和土壤有机污染的修复方法而直接对土壤中多种粘土矿物进行改性研究,即利用有机表面活性剂去置换天然粘土矿物中存在着的大量可交换的无机阳离子,以形成有机粘土矿物,可有效截住或固定有机污染物,阻止地下水的进一步污染,限制有机污染物在土壤环境中迁移扩散。但特别需要指出的是,在粘土矿物改性过程中,其中的固定态重金属也一并被置换出来,导致土壤系统中业已建立环境平衡被打破,使得土壤环境中解吸释放态重金属污染物总量大大增加。至此,土壤中重金属污染物既来源于土壤中活动态的重金属,又来源于改性粘土矿物时被置换释放出来的重金属。以本实验室正在开展研究的环境矿物材料[48]—天然铁锰铝氧化物及氢氧化物为例[49, 50],其中磁铁矿、赤铁矿、针铁矿、软锰矿、硬锰矿与铝土矿等也正在成为国际上关于天然矿物净化污染方法研究方面的重点对象之一[51]。我们认为天然铁锰铝氧化物及氢氧化物的表面具有明显的化学吸附性特征,锰氧化物与氢氧化物还具有较完善的孔道特征,尤其是Fe、Mn为自然界中少数的但属于常见的变价元素,其氧化物和氢氧化物化合物往往可表现出一定的氧化还原作用。所以说天然铁锰铝氧化物及氢氧化物具有潜在的净化重金属污染物的功能,能成为土壤环境中吸附固定态重金属污染物的有效物质。
综上所述,国内外对土壤重金属污染现状与治理,取得了一定的成绩,也存在一些理论上和技术上的问题,如土壤中重金属与土壤中矿物之间的吸附与解吸、固定与释放的平衡关系的研究,土壤中重金属形态特征、转化与迁移规律的系统研究,土壤中二次污染物的及时处理等。
土壤重金属污染首先应从源头抓起,控制污染源,土壤重金属的污染已经达到相当严重的程度,要充分认识土壤重金属污染的长期性、隐匿性、不可逆性以及不能完全被分解或消逝的特点。土壤质量问题是经济可持续发展和社会全面进步的战略问题,它直接影响土壤质别、水质状况、作物生长、农业产量、农产品品质等,并通过食物链对人体健康造成危害。对工业生产中排放的污染物尚未得到较彻底控制,尤其在农业生产中大量而盲目使用化学肥料和农药的今天,江河湖海、地下水及陆地中无机和有机污染物积累总量与日俱增,使土地环境质量变得极其脆弱。一旦土壤对这些污染物尤其是重金属的消纳容量达到饱和,这些污染物对耕地生产能力的潜在毁灭性破坏便有可能一触即发,有人已形象地称之为农业生产中的“定时炸弹”。从这个意义上来讲,土地管理与保护工作不仅是对耕地总量的监管,还应该加强对耕地质量的保护与改善。对土壤质量的保护便是对耕地生产能力的保护,更是提高土地利用效率的强有力措施之一。对于我国这样一个人口众多的农业大国,开展国土质量调查评价,对土壤重金属污染物进行试验研究,开发耕地污染的治理方法和技术,显得更为必要和迫切。

参考文献:
[1]      周泽义. 中国蔬菜重金属污染及控制[J]. 资源生态环境网络研究动态,1999, 10(3): 21-27.
[2]      张辉. 南京地区土壤沉积物中重金属形态研究[J]. 环境科学学报,1997,17(3):346-351.
[3]      ZHI YUN LIN. The source and fate of Pbin central Sweden[J]. Sci.Total Environ, 1998, 209(1): 47-58.
[4]      张辉. 南京某合金厂土壤铬污染研究[J]. 中国环境科学,1997, 17(2): 80-82.
[5]      MESHALKINA T L. Spatial variability of soil contamination around a sulphwreous acid producing factory in Russia[J]. Water Air soil pollut, 1996, 92(3/4): 289-313.
[6]      张辉. 公路重金属污染的形态特征及其解吸、吸持能力探讨[J]. 环境化学,1998,17(6):564-568.
[7]      张书海,林树生. 交通干线铅污染对两侧土壤和蔬菜的影响[J]. 环境监测管理与技术,2000, 12(3): 27-28转36.
[8]      PYEONG-KOO Lee. Heavy metal contamination of settling particle in a retention .pond along the A-71 motorway in Sologne, France [J]. Sci. Total Environ, 1997, 201(1): 1-15.
[9]      ZUPANCIC N. Lead contamination in the Roadside Soil of Siovenia[J]. Environ. Geochemistry and Health, 1999, 21(1): 37-50.
[10]      方凤满,王起超. 土壤汞污染研究进展[J]. 土壤与环境,2000,9(4): 326-329.
[11]      WOBESER G A,SWIFT M. Mercury Poisioning in a Wild Milk[J]. J Wild Dis, 1976, 12: 335-340.
[12]      MANSON R P, FITZGERAD W F, MOREL F M M. The biogeochemical cycling of elemental mercury:anthropogenic influences [J]. Geochimica et Cosmochimica Acta, 1994, 58: 3191-3198.
[13]      王焕校. 污染生态学[M]. 北京:高等教育出版社,2000: 188-213.
[14]      马耀华,刘树应. 环境土壤学[M]. 西安:陕西科学技术出版社,1998: 198-201.
[15]      Taylor M D. Accumulation of cadmium derived fyom fertilizers in New Zealand soil[J]. Sci.Total Environ,1997, 208(1/2): 123-126.
[16]      LIDIA.GIUFFRÉ DE LÓPEZ CAME. eavy metals input with phosphate fertilizers used in Argentina[J]. Sci.Total Environ, 1997, 204(3): 245-250.
[17]      杨小波,吴庆书. 城市生态学[M]. 北京:科学出版社,2000: 124-129.
[18]      陈怀满,郑春荣. 中国土壤重金属污染现状与防治对策[J]. AMBIO: 人类环境杂志,1999,28(2):130-134.
[19]      张书海,沈跃文. 污灌区重金属污染对土壤的危害[J]. 环境监测管理与技术,2000,12(2): 22-24.
[20]      张乃明. 太原污灌区土壤重金属污染研究[J]. 农业环境保护,1996,15(1):21-23.
[21]      乔显亮,骆永明,吴胜春. 污泥的土地利用及其环境影响[J]. 土壤,2000,32(2): 79-85.
[22]      ANTHONY CARPI. Methyl mercury contamination and emission to the atmosphere from soil amended with municipal sewage sludge[J]. J Environ Qual, 1997, 26(6): 1650-1654.
[23]      方满,刘洪海. 武汉市垃圾堆放场重金属污染调查及控制途径[J]. 中国环境科学,1998,8(4): 54-59.
[24]      潘海峰. 铬渣堆存区土壤重金属污染评价[J]. 环境与开发,1994,9(2): 268-270.
[25]      张辉,马东升. 城市生活垃圾向土壤释放重金属研究[J]. 环境化学,2001,20(1): 43-47.
[26]      MARTIN A C. Contamination by heavy metals in soils in the neighbourhood of a scrapyard of discarded vehic[J]. Sci. Total Environ, 1998, 212(2/3)145-152.
[27]      孟祥和,胡国飞. 重金属废水处理[M]. 北京化学工业出版社,2000: 9-12.
[28]      刘文新,汤鸿霄. 河流沉积物重金属污染质量控制基准的研究: I C-B-T质量三合一方法[J]. 环境科学学报,1999,19(2): 120-125.
[29]      DEACON J R. Distribution of trace elements in streambed sediment associated with mining activities in the upper Colorado river basin, Colorado, USA, 1995-1996[J]. Arch Environ Contam Toxicol, 1999, 37(1): 7-18.
[30]      XIANG HUA WEN. Mobization of heavy metals from Le An River sediment[J]. Sci.total Environ, 1999, 227(2): 101-108.
[31]      傅瑞标,何青. 长江南槽重金属的分布特征[J]. 中国环境科学,2000,20(4): 357-360.
[32]      刘文新,栾兆坤. 河流沉积物重金属污染质量控制基准的研究: Ⅱ 相平衡分配方法[J]. 环境科学学报,1999,19(3): 230-235.
[33]      胡永定. 荆马河区域土壤重金属污染的成因分析[J]. 江苏环境科技,1994(1): 9-12.
[34]      王文祥. 山东省耕地重金属元素污染状况及其评价[J]. 土壤,1993,25(6): 315-318.
[35]      丁圆. 重金属污染土壤的治理方法[J]. 环境与开发,2000,15(2): 25-28.
[36]      王慎强,陈怀满. 我国土壤环境保护研究的回顾与展望[J]. 土壤,1999,31(5): 255-260.
[37]      李永涛. 土壤污染治理方法研究[J]. 农业环境保护,1997,16(3): 118-122.
[38]      余贵芬. 重金属污染土壤治理研究现状[J]. 农业环境与发展,1998,4: 22-24.
[39]      夏星辉. 土壤重金属污染治理方法研究进展[J]. 环境科学,1997,3: 72-76.
[40]      孙波,骆永明. 超积累植物吸收金属机理的研究进展[J]. 土壤,1999,31(3): 113-119.
[41]      李书鼎. 土壤植物系统重金属长期行为的研究[J]. 环境科学学报,2000,20(1): 76-80.
[42]      蒋先军. 重金属污染土壤的植物修复研究[J]. 土壤,2000,32(2): 71-74.
[43]      吴龙华,骆永明. 铜污染土壤修复的有机调控研究[J]. 土壤,2000,32(2): 67-70.
[44]      蒋先军,骆永明,赵其国. 重金属污染土壤的微生物学评价[J]. 土壤,2000,32(3): 130-134.
[45]      NANDA KUMAR P B A. Phtoextraction: the use of plants to remove heavy metals from soils[J]. Environ.Sci &Technol, 1995, 29(5): 1232-1238.
[46]      林匡飞. 苎麻吸镉特征及镉土的改良试验[J]. 农业环境保护,1996,1: 1-4,8.
[47]      王新. 不同作物对重金属复合污染物吸收特征研究[J]. 农业环境保护,1998,17(5): 193-196.
[48]      鲁安怀. 环境矿物材料研究方向探讨[J]. 岩石矿物杂志,1997,16(增刊):184-187.
[49]      鲁安怀. 环境矿物材料在土壤、水体、大气污染治理中的利用[J]. 岩石与矿物学杂志,1999,18(4):292-300.
[50]      鲁安怀、卢晓英. 天然铁锰氧化物及氢氧化物环境矿物学研究[J]. 地学前缘,2000,7(2):473-483.
[51]      吴大清,刁桂仪,彭金莲,等. 矿物界面作用与环境工程材料[J]. 矿物岩石地球化学通报,1998,17(4): 217-223.




文章录入:anny    责任编辑:anny 

精彩图片
文章评论
数据载入中,请稍后……
  请您注意:
 ·请遵守中华人民共和国有关法律法规、《全国人大常委会关于维护互联网安全的决定》及《互联网新闻信息服务管理规定》。
 ·请注意语言文明,尊重网络道德,并承担一切因您的行为而直接或间接引起的法律责任。
 ·中国环境生态网文章跟帖管理员有权保留或删除其管辖留言中的任意内容。
 ·您在中国环境生态网发表的言论,中国环境生态网有权在网站内转载或引用。
 ·发表本评论即表明您已经阅读并接受上述条款,如您对管理有意见请向文章跟帖管理员反映。

绿色进行时
推荐文章
研究称全球变暖毁灭远古雨林
隧道内发现的蕨类植物美国研究人员在伊利诺伊州一处煤矿发现…
绿色生活
驴行天下

| 设为首页 | 加入收藏 | 关于我们 | 广告服务 | 联系站长 | 友情链接 | 版权申明 | 管理登录 |