
Page 1
prEN ### 1997

EUROPEAN PRESTANDARD DRAFT

PRÉNORME EUROPÉENNE pr ENV ***
EUROPÄISCHE VORNORM September 1997

Key words: Data processing for building automation, open communication, services,
protocols

English version

Data Communication for HVAC Applications
Automation Net

Part 4: EIB

A Data Communication Protocol for building Automation and Control Networks

 (FRENCH TITLE) (GERMAN TITLE)

This European Prestandard (ENV) was approved by CEN on ... as a prospective standard for provisional application. The
period of validity of this ENV is limited initially to three years. After two years the members of CEN will be requested to submit
their comments, particularly on the question as to whether the ENV can be converted into a European Standard(EN)

All CEN members are required to announce the existence of this ENV in the same way as for an EN and to make the ENV
available promptly at national level in an appropriate form. It is permissible to keep conflicting national standards in force (in
parallel to the ENV) until the final decision about the possible conversion of the ENV into an EN is reached.

The CEN members are the national standards bodies of Austria, Belgium, Denmark, Finland, France, Germany, Greece,
Iceland, Ireland, Italy, Luxembourg, the Netherlands, Norway, Portugal, Spain, Sweden, Switzerland and the United Kingdom.

CEN
European Committe for Standardization

Comité Européen de Normalisation
Europäisches Komitee für Normung

Central Secretariat: rue de Stassart 36, B - 1050 Brussels
__

© 1997 Copyright reserved for CEN members Ref. No EN *** 1997 E

Page 2
prEN ### 1997

Table of Contents
1 Foreword 11

2 Introduction 12

3 Scope 13

4 References 13

5 General Requirements 13

6 Physical Layer / MAC Layer / Logical Link Layer (A) 15

7 Logical Link Layer (B) 17

8 Network Layer 27

9 Transport Layer 32

10 Session Layer 46

11 Presentation Layer 46

12 Application Layer 48

13 Application Layer Services 51

14 Layer-7 Services on Broadcast Communication Relationships 55

15 Layer-7 Services on one-to-one connection-less Communication Relationships 63

16 Layer-7 Services on one-to-one connection-oriented Communication
Relationships 81

17 Parameters of Layer-7 92

18 Network Management 94

19 Introduction 120

20 References 120

21 Objects and Properties 121

22 Conversion of EIB-Group Objects to BACnet 124

23 Conversion of EIB-Objects not existing in BACnet 125

24 Conversion of EIB-Objects to BACnet-Objects 125

25 Type Conversions 129

Page 3
prEN ### 1997

1 Foreword

This European Prestandard (ENV) has been prepared by the CEN TC247, Controls for
Mechanical Building Services. It received approval from the CEN BT (Technical
Board).

This European Prestandard (ENV) is part of a series of standards for system-neutral data
communications in HVAC systems. Together with ENV *** Part 1 (BACnet),
ENV *** Part 2 (Profibus) and ENV *** Part 3 (WorldFIP®) this Prestandard covers the
data communication on the Automation Net level.

The position of this standard in the whole range of standards for mechanical building
services is illustrated in figure 1.

Ventilation
and air

conditioning
systems

Heating
Systems

TC 247
Controls for
M echanical

Building services

Mechanical Building Services

Building
Management
Products and
Systems for

HVAC Applications

Individual
Zone Control

For HVAC
Applications

Controls
for Heating

Systems

Management Net

System Neutral
Data Transmission

for H V A C
Applications

Field Net

BACnet Profibus EIBW o rldFIP

Automation Net

Figure 1: Relationship to TC247

The shaded boxes in figure 1 indicate the contents and the hierarchy of this standard.
The plain areas show the positioning of this standard in relationship to other relevant
mechanical building services standards

Page 4
prEN ### 1997

2 Introduction

This specification of the EIB describe the usage of the EIB on the automation net level.
The EIB on automation net level offers the possibility to use the EIB on faster Media.
EIB devices for the automation net level use a homogeneous addressing method to the
fieldnet level. This allows to use the EIB with automation level devices like Application
Specific Controller (ASC) and programmable controllers in home and light commercial
building environment. EIB offers full compatibility for process communication and for
monitoring, engineering and commanding of applications in ASC. Furthermore EIB on
automation level is well suited for the interconnection of EIB-Networks. It supports the
structured cabling approach.

The EIB system may be implemented on different media. Therefore this standard
concerns only the media independent parts of the system called “protocol”.

Line 1 Line 2 Line 12

Zone 1

Main Line 1

Line Coupler

~ ~ Power Supply + Choke

Media Coupler

~

~

Main Line 2 / Line 1

EIB End Devices

EIB End Devices

EIB on Automationnet
(e.g. EIB on Ethernet)

e.g. EIB-Twisted Pair Medium

any other EIB-Medium

Figure 2: Relationship EIB to EIB on Automation net

EIB The EIB is a control system for all related applications in home and
buildings.

Media Coupler A Media Coupler connects a physical segment of EIB with a
physical segment of an other EIB-Medium.

Device A device is either a Coupler or an EIB end device. A device has a
unique physical address.

EIB End Device (EED) This is a device with a unique physical address, that
performs an application in a heating, ventilating and air
conditioning and related building management environment.

Line A line may consist of up to 255 EIB end devices.

Line Coupler A Line Coupler connects two lines.

Page 5
prEN ### 1997

EIB-System An EIB-System is a number of EIB end devices using the same
System-ID and being connected either to a line coupler or to a
media coupler.

Network A network or EIB network is a number of EIB-Systems.

3 Scope

This European Prestandard defines a system neutral data communication method for use
at the automation level in heating, ventilating and air conditioning and related building
management applications.

4 References

This European Prestandard incorporates by reference, provisions from other
publications. These normative references are cited at the appropriate places in the text
and the publications are listed hereafter. For dated references, subsequent amendments
to or revisions of any of these publications apply to this European Prestandard only
when incorporated in it by amendment or revision. For undated references the latest
edition of the publication applies.

EN 27498 Information processing systems. Open System Interconnection.
Basic reference model (ISO 7498:1984 and addendum 1:1987)

ISO/IEC 8802-2 Information technology -
Telecommunications and information exchange between systems -
Local and metropolitan area networks -
Specific requirements

 (pr)EN(v) 50090 HBES (Home and Building Electronic System)

5 General Requirements

Each of the following clauses describes an OSI layer. Each clause contains sub-clauses giving
a survey about the remainder of the clause. Interoperations of a layer with its adjacent layers
are described there.

Page 6
prEN ### 1997

ISO
Application Layer EIB Application Layer

ISO
Session Layer EIB Session Layer

ISO
Presentation Layer EIB Presentation Layer

ISO
Transport Layer EIB Transport Layer

ISO
Network Layer EIB Network layer

LLC (B) EIB

ISO
LLC (A) ISO/IEC 8802-2 Data link layer

MAC Layer

ISO
Physical Layer Physical layer

Figure 3: Relationship to LAN reference model

Page 7
prEN ### 1997

6 Physical Layer / MAC Layer / Logical Link Layer (A)

For the Physical Layer / MAC Layer all standards using the ISO/IEC 8802-2 Logical Link
Layer can be used.
The International Standards for media access technologies using ISO/IEC 8802-2 as Logical
Link Layer are as follows :
1. ISO/IEC 8802-3 / IEEE 802.3 a bus utilising CSMA/CD as the access method

(Ethernet)
2. ISO/IEC 8802-4 / IEEE 802.4 a bus utilising token passing as the access method
3. ISO/IEC 8802-5 / IEEE 802.5 a ring utilising token passing as the access method
4. ISO/IEC 8802-6 / IEEE 802.6 a dual bus utilising distributed queuing as the access

method
5. ISO/IEC 8802-7 / IEEE 802.7 a ring utilising slotted ring as the access method

Other types are under investigation.

Page 8
prEN ### 1997

THIS PAGE LEFT BLANK INTENTIONALLY

Page 9
prEN ### 1997

7 Logical Link Layer (B)

The EIB-Data Link Layer for automationnet level uses the Logical Link Layer from
ISO/IEC 8802-2 with the DL-UNITDATA primitive only.

LLC (B) EIB

ISO
LLC (A) ISO/IEC 8802-2 Data link layer

MAC

ISO
Physical Layer Physical layer

Figure 4: Relationship to LAN reference model

7.1 Address Types

7.1.1 MAC-Address

The MAC-Address is the physical device address of the used MAC-layer e.g. the
Ethernet-Address. The MAC-address may be used as broadcast address.

7.1.2 System-Identifier

Only EIB-Devices with the same System-ID can communicate with each other. For
communication between different systems there may exist EIB-Devices with more than
one System-ID.

Sys tem-ID
7 6 5 4 3 2 1 0

Figure 5: System-Identifier

7.1.3 Physical Address

Each device, i.e. a router or an EIB end device shall have a unique physical address in an
EIB-System. The physical address is a two octet value that consists of an eight bit device
address, a four bit line address and a four bit zone address.

Physical Address

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

zone address line address device address

Figure 6: Physical Address

The device address must be unique within a line. Routers shall always have the device
address zero: EIB end devices may have addresses 1-255.

The line address must be unique within a zone (0-15). The devices in the main line of a
zone shall always have the line address zero.

The zone address must be unique within an EIB network (0-15). The devices at the
backbone-line shall always have the zone address zero.

Page 10
prEN ### 1997

The physical addressing uses the DL-UNITDATA primitive with broadcast addressing
and with a specified MAC-address over the EIB for automationnet level.

7.1.4 Group Address

Group Address
Des t. Address (h igh) Des t. Address (low)
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Figure 7: Group Address

The group address is a two byte value that doesn’t need to be unique. An EIB end device
may have more than one group address.

Each EIB end device belongs to group zero, i.e. request frames with destination group
address zero are broadcasts.

The group addressing uses the DL-UNITDATA primitive with broadcast addressing
only over the EIB for automationnet level

7.1.5 Poll-Group Address

Group Address
Des t. Address (h igh) Des t. Address (low)
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Figure 8: Poll-Group Address

The Poll-Group Address is a two byte value that doesn’t need to be unique. An EIB end
device may have more than one Poll-Group Address.

The poll group addressing uses the DL-UNITDATA primitive with broadcast addressing
for a request frame and with a specified MAC-address for any response frame over EIB.

7.2 Frame Formats

There exists two types of frames, the L-Data frame and the L-PollData frame. The L-
Data frame is used for normal communication and the L-PollData frame is only used for
polling mechanism.

Page 11
prEN ### 1997

7.2.1 Frame Format L-Data

Octet 0 Oc tet 1 Oc tet 2 Oc tet 3 Oc tet 4

Dest . SAP Source SAP LLC-Control E IB-Control System-ID

D
es

t.
SA

P
(=

 "x
x"

)

So
ur

ce
 S

AP
 (=

 "x
x"

)

LL
C

-C
on

tro
l (

=
03

h)

St
an

da
rd

-E
IB

0 0 0 0 0 0 0

Sy
st

em
-ID

M A C -Header L-2a L-2b

.. Octet 5 Octet 6 Octet 7 Octet 8 Octet 9 Octet 10 Octet 11 Octet 12 Octet 13 ... Octet n

.. Control Field Source Device Addr. Destination Addr. LL-Length

.. 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1

.. 0 1 0 0

.

Le
ng

th
-ty

pe

re
pe

at
 fl

ag

pr
io

rit
y

"

zo
ne

 a
dd

re
ss

" " "
lin

e
ad

dr
es

s
" " "

no
de

 a
dd

re
ss

" " " " " " "
 d

es
t.

gr
ou

p/
ph

ys
ic

al
 a

dd
re

ss
" " " " " " " " " " " " " " "

de
st

in
at

io
n_

ad
dr

es
s_

 fl
ag

 (D
AF

)
ne

tw
or

k
co

nt
ro

l f
ie

ld
" "

le
ng

th
 (1

 to
 1

5;
 s

ta
rt

w
ith

 O
ct

et
 1

1)
" " "

TP
C

I
" " " " "

AP
C

I
" " "

da
ta

/A
PC

I
da

ta
/A

PC
I

da
ta

/A
PC

I
da

ta
/A

PC
I

da
ta

/A
PC

I
da

ta
/A

PC
I

da
ta

da
ta

da
ta

da
ta

da
ta

da
ta

da
ta

da
ta

da
ta

da
ta

da
ta

da
ta

da
ta

da
ta

da
ta

da
ta

da
ta

da
ta

da
ta

da
ta

da
ta

da
ta

da
ta

da
ta

L-2b L-3 L-2 L-4 L-7

application user data

LSDU

application control field

Figure 9: L_Data Frame Format

Page 12
prEN ### 1997

7.2.2 Frame Format L-Poll-Data

Octet 0 Oc tet 1 Oc tet 2 Oc tet 3 Oc tet 4

Dest . SAP Source SAP LLC-Control E IB-Control System-ID

D
es

t.
SA

P
(=

 "x
x"

)

So
ur

ce
 S

AP
 (=

 "x
x"

)

LL
C

-C
on

tro
l (

=
03

h)

St
an

da
rd

-E
IB

0 0 0 0 0 0 0

Sy
st

em
-ID

M A C -Header L-2a L-2b

.. Octet 5 Octet 6 Octet 7 Octet 8 Octet 9 Octet 10 Octet 11 Octet 12 Octet 13 ... Octet 26

.. Control Field Source Device Addr. Destination Addr. Poll Control Pol l -Data 0 Pol l-Data 1 Pol l-Data 3 … Poll-Data 15

..

..
.

zo
ne

 a
dd

re
ss

" " "
lin

e
ad

dr
es

s
" " "

no
de

 a
dd

re
ss

" " " " " " "
 d

es
t.

po
llin

g
gr

ou
p

ad
dr

es
s

" " " " " " " " " " " " " " "

L-2b

Figure 10: L_PollData Frame Format

Page 13
prEN ### 1997

A frame is sent as a sequence of octets. Figure 10 shows the octets instead of the UART
characters of the request frame to make it easier to read. The UART character that
corresponds to octet 0 is sent first, the octet with the highest number is the last character
being sent. The figure shows the octets with MSB first.

7.2.3 Destination SAP / Source SAP

The Destination and Source Service Access Points must be a single octet value X’xx’
and is used to indicate that the Link layer Service Data Unit (LSDU) containing a EIB
Data Packet.

7.2.4 LLC-Control

The LLC-Control is always X’03’ and indicates that only the DL-UNITDATA primitive
from ISO/IEC 8802-2 is used.

7.2.5 EIB-Control

The EIB-Control is used to specify services that are only used on the EIB for
automationnet. The EIB-Control Field is encoded as follows :

EIB-Control Field

8 7 6 5 4 3 2 1
standard-EIB Flag :0 EIB

St
an

da
rt-

EI
B

Fl
ag

 1 only EIB on Automationnet

s 0 0 0 0 0 0 0

Figure 11: EIB-Control Field Format

7.2.6 System-Identifier

Only EIB-Devices with the same System-ID can communicate with each other. For
communication between different systems there may exist EIB-Devices with more than
one System-ID.

7.2.7 Control Field

The Control field is for compatibility to the EIB-Twisted Pair medium. The encoding of
the control field is shown in the next figure:

Page 14
prEN ### 1997

Control Field

7 6 5 4 3 2 1 0
repeat flag always 1

le
ng

th
_t

yp
e

re
pe

at
 fl

ag

cl
as

s
cl

as
s

1 1 1 1 0 0 0 0 L_Polldata frame

1 0 1 1 c1 co l 0
 Length-type of Informationlength

 1 : Byte

c1 c0 0 : Index to Lengthtable

0 0 system

1 0 alarm

0 1 high priority

1 1 low priority

Figure 12: Control Field

The control field indicates the type of the L_Data frame. The two class bits of the
control field control the priority of the frame.

7.2.8 Source Address

The Source Address is always the Physical Address of the sending device.

7.2.9 Destination Address

The Destination Address depends on the Destination Address Flag of the LL-Length
field. It could be either a Physical Address or a Group Address.

7.2.10 LL-Length

The LL-Length field is encoding as follows:

LL-Length

8 7 6 5 4 3 2 1 DAF : 0 Destination Address is Physical Address

 1 Destination Address is Group Address

D
es

tin
at

io
n

Ad
dr

es
sF

la
g

N
L-

C
on

tro
l

" "
LL

-L
en

gt
h

" " "

LL-Length depends on the Length-Type-
Bit in the control field. It can be either a
octet length starting with octet 11or an
index to a length table

D n n n l l l l

Figure 13: LL-Length Format

Page 15
prEN ### 1997

coding length

0 16

1 17

2 18

3 19

4 20

5 22

6 25

7 29

8 34

9 40

10 80

11 120

12 160

13 200

14 244

15 ESC

Figure 14: LL-Length Table

The L_Data request frame format has a variable length, with length type 1 the maximum
length is 28 characters. The LL-Length indicates the number of octets (1-15) of the
LSDU starting with octet 11.

7.3 PollData Control

Poll Control

8 7 6 5 4 3 2 1

Po
ll

C
on

tro
l

" " "
Sl

av
e

" " "

p p p p l l l l

Figure 15:Poll Control Format

Page 16
prEN ### 1997

Poll Control Slave

0000 b Number
of Slaves

Poll request for fieldlevel EIB (through a
Media Coupler)

0100 b Number
of Slaves

Poll response from fieldlevel EIB

1000 b Number
of Slaves

Poll Data Master frame

1100 b Slave ID 1100 b Poll Data Slave frame

7.4 Logical Link Layer (B) Services

Logical Link Layer (B)Logical Link Layer (B)
LPDU

L_Poll_Data.con
L_Poll_Data.req

Remote Layer-2 UserLocal Layer-2 User

L_Poll_Data_Update.con
L_Poll_Data_Update.reqL_Data.con

L_Data.req
L_Data.ind

L_Busmon.ind

L_ServiceInfo.ind

Figure 16: Interactivity of the Logical Link Layer (B)
7.4.1 L_Data Service

The local user of layer-2 prepares an LSDU for the remote user. The local user of
layer-2 applies the L_Data.req primitive to pass the LSDU to the local layer-2. The local
layer-2 accepts the service request and tries to send the LSDU to the remote layer-2. The
destination address may be a physical address or a group address (multicast or
broadcast). The local layer-2 passes an L_Data.con primitive to the local user that
indicates the data transfer results.

If the request frame is received and the system-ID and destination address match, the
remote layer-2 passes the LSDU with a L_Data.ind primitive to the remote user.
L_Data.req(MAC-Address, system-ID, source_address, destination_address, DAF,

class, l_sdu)
MAC-Address destination Address of MAC-Layer
system-ID Identifier of the EIB-System.
source_address: Physical address of the EIB end device that

requested the L_Data service.
destination_address: Either a physical address or a group address
DAF: Indicates whether destination_address is a

physical(‘0’) or a group address (‘1’).
class: System, alarm, high or low priority.
l_sdu: This is the user data to be transferred by

layer-2.

L_Data.con(l_status)
l_status: OK; Request frame sent successfully.
 not_ok; Transmission of the request frame failed.

Page 17
prEN ### 1997

L_Data.ind(MAC-Address, source_address, destination_address, DAF, class,
l_sdu)

MAC-Address source Address of MAC-Layer
source_address: Physical address of the EIB end device that

requested the L_Data service.
destination_address: The physical address of this device or a

group address of this device.
DAF: Indicates whether destination_address is a

physical(‘0’) or a group address (‘1’).
class: System, alarm, high or low priority.
l_sdu: This is the user data that has been

transferred by layer-2.

7.4.2 L_Poll_Data Service and Protocol

The L_Poll_Data service is a confirmed multicast service. The local user of layer-2
applies the L_Poll_Data.req primitive to request data from one or more remote users.
The local layer-2 accepts the service request and tries to send the L_Poll_Data.req to the
remote layer-2. The destination address is always a poll group address. The poll group
address is a parameter of layer-2.

After receiving a correct L_Poll_Data request frame with a poll_group_address and
System-ID matches, the remote layer-2 responds with a L_Poll_Data frame with a single
Poll-Data octet to the address of the local layer-2. The remote layer-2 gets the Poll-Data
octet from its user with the L_Poll_Update.req primitive. The Poll_Data character shall
be transmitted with the correct slot-id. The response slot number is a parameter of layer-
2.

A device shall not respond if its response slot number is larger than the number of
expected poll data (no_of_expected_poll_data) in the request frame.

The local layer-2 expects a number of L_PollData frames from the poll group. If an
expected L_PollData frame has not been received after 3 seconds the local layer-2 fills
the poll data with the fill octet FEh. The remote layer-2 can therefore still count
L_PollData frames even if a member of the poll group doesn’t respond.

The local layer-2 passes a L_Poll_Data.con primitive to the local user that contains the
received Poll_Data and FILL octets or an information that the service failed.

The L_Poll_Data Service can only be applied between EIB end devices on a single
physical segment. The number of expected Poll_Data characters is limited to 16.
L_Poll_Data.req(MAC-Address, destination, no_of_expected_poll_data)
MAC-Address destination Address of MAC-Layer
destination: a poll group address
no_of_expected_poll_data: number of expected poll data

L_Poll_Data.con(l_status, poll_data_sequence)
l_status: OK; valid poll_data_sequence
 not_ok; invalid poll_data_sequence, i.e. collision

occurred during transmission of a FILL, or
at least one Poll_Data not correct

poll_data_sequence: sequence of Poll_Data octets and FILL octets

L_Poll_Update.req(Poll_Data)
Poll_Data: The value of the Poll_Data octet to be

transmitted in the L_Poll_Data_Response
frame.

L_Poll_Update.con() Indicates that the L_Poll_Update.req has
been accepted by the local layer-2.

Page 18
prEN ### 1997

7.5 L_Busmon Service

The L_Busmon service is a local data link service available only in data link bus
monitor mode. It consists of the L_Busmon.ind primitive which transfers each received
frame from the local layer-2 to the local layer-2 user.
L_Busmon.ind(MAC-Address, l_status, time_stamp, lpdu)
MAC-Address source Address of MAC-Layer
l_status: information whether a frame error, bit error

or a parity error was detected in the
received frame. Additional information about
the number of already received frames may
also be contained.

time_stamp: timing information, when the start bit of
the frame was received

lpdu: all octets of the received frame

7.6 L_Service_Information Service

The L_Service_Information service is a local data link service available in data link
normal mode. It consists of the L_Service_Information.ind primitive.
L_Service_Information.ind(). a frame was received which contained the

physical address of the local layer-2 as
source address.

7.7 Parameters of Layer-2

The following parameters influence the behaviour of layer-2 and are required inside
layer-2 in order to operate correctly:

physical address unique physical address of this device

address table address table with the group address(es) of this EIB end
device.

system-ID defines the system in which a device can communicate

poll group address the poll group address of this EIB end device

slot number the response slot number of this EIB end device

data link layer mode the normal or the bus monitor mode of the data link layer.

response slot number the response slot number of this EIB end device

Page 19
prEN ### 1997

8 Network Layer

The network layer is controlling the number of routers and bridges that a frame with a
group address as a destination is passing on its way from the source to the destination.
The network layer is the lowest layer that deals with end-to-end transmission. In
addition layer-3 offers more detailed services to the transport layer by encoding and
decoding L_Data services of layer-2 which are mapped to N_Data, N_Broadcast and
N_Group_Data services.

The Network link layer is using the services of the data link layer and provides services
to the transport layer (Figure 17).

Netw ork Layer

L_Data.con
L_Data.req

Remote Layer-3 UserLocal Layer-3 User

N_Data.con
N_Data.req

N_Data.ind

L_Data.ind

N_Broadcast.con

N_ Broadcast.req

N_Broadcast.indN_GroupData.ind

N_GroupData.con
N_GroupData.req

Netw ork Layer

NPDU

Figure 17: Interactivity of the Network Layer

8.1 NPDU

The NPDU corresponds to the LPDU without the routing counter (Figure 18).

Octet 10 Octet 11 Octet 12 Octet 13 ...

de
st

in
at

io
n_

ad
dr

es
s_

 fl
ag

 (D
AF

)
ne

tw
or

k
co

nt
ro

l f
ie

ld
" "

le
ng

th
 (1

 to
 1

5;
 s

ta
rt

w
ith

 O
ct

et
 1

1)
" " "

tra
ns

po
rt

co
nt

ro
l f

ie
ld

" " " " "
AP

C
I

" " "
da

ta
/A

PC
I

da
ta

/A
PC

I
da

ta
/A

PC
I

da
ta

/A
PC

I
da

ta
/A

PC
I

da
ta

/A
PC

I
da

ta
da

ta
da

ta
da

ta
da

ta
da

ta
da

ta
da

ta
da

ta
da

ta
da

ta
da

ta
da

ta
da

ta
da

ta
da

ta
da

ta
da

ta
da

ta
da

ta
da

ta
da

ta
da

ta
da

ta

L-3 L-2 L-4 L-7

appl icat ion user data

N P D U N P D U

N S D U

application control f ield

Figure 18: Format of the NPDU

8.2 Network Layer Services

8.2.1 N_Data Service

The N_Data service is confirmed locally. The local user of layer-3 prepares an NSDU
for the remote user of layer-3, the destination is addressed with a physical address. The
local user of layer-3 applies the N_Data.req primitive to pass the NSDU to the local
layer-3. The local layer-3 accepts the service request and passes it with an L_Data.req
with DAF = ´0´ to the local layer-2.

The local layer-3 encodes the NSDU to the LSDU by adding the routing_counter and
mapping the arguments MAC-Address, destination_address and class to the
corresponding arguments destination_address and class of the L_Data.req primitive.

Page 20
prEN ### 1997

The remote layer-3 is mapping an L_Data.ind primitive with DAF = ‘0’ to a N_Data.ind
primitive. The argument l_sdu is mapped to the argument n_sdu by removing the
routing counter, the arguments MAC-Address, destination_address and class are
mapped to the corresponding arguments destination_address and class of the
N_Data.ind primitive.

The local layer-3 is mapping the L_Data.con primitive to the N_Data.con primitive. The
argument l_status is mapped to the corresponding argument n_status of the N_Data.con
primitive.
N_Data.req(MAC-Address, destination_address, class, n_sdu)
MAC-Address destination Address of MAC-Layer
destination_address: physical address of the destination
class: system, alarm, high or low priority
n_sdu: this is the user data to be transferred by

layer-3

N_Data.con(MAC-Address, destination_address, n_status)
MAC-Address destination Address of MAC-Layer
destination_address: physical address of the destination
n_status: OK; N_Data sent successfully with L_Data
 not_ok; transmission of the associated L_Data

request frame didn’t succeed

N_Data.ind(MAC-Address, source_address, destination_address, class, n_sdu)
MAC-Address source Address of MAC-Layer
source_address: physical address of the EIB end device that

requested the N_Data service
destination_address: the physical address of this device
class: system, alarm, high or low priority
n_sdu: this is the user data that has been

transferred by layer-3

8.2.2 N_Groupdata Service

The N_Groupdata service is confirmed locally. The local user of layer-3 prepares an
NSDU for the remote user of layer-3, the destination is addressed with a group address.
The local user of layer-3 is applying the N_GROUPDATA.req primitive to pass the
NSDU to the local layer-3. The local layer-3 accepts the service request, adds the MAC-
Address for broadcast and passes it with an L_Data.req with DAF = ´1´ to the local
layer-2.

The local layer-3 is encoding the NSDU to the LSDU by adding the routing_counter and
mapping the arguments destination_address and class to the corresponding arguments
destination_address and class of the L_Data.req primitive.

The remote layer-3 is mapping an L_Data.ind primitive with DAF = ‘1’ and
destination_address<>‘0’ to a N_Groupdata.ind primitive. The argument l_sdu is
mapped to the argument n_sdu by removing the routing counter, the arguments
destination_address and class are mapped to the corresponding arguments
destination_address and class of the N_Groupdata.ind primitive. The argument MAC-
Address from the remote layer-2 is dropped.

The local layer-3 is mapping the L_Data.con primitive to the N_Groupdata.con
primitive. The argument l_status is mapped to the corresponding argument n_status of
the N_Groupdata.con primitive. The argument MAC-Address from the local layer-2 is
dropped.
N_Groupdata.req(destination_address, class, n_sdu)
destination_address: group address of the destination
class: system, alarm, high or low priority
n_sdu: this is the user data to be transferred by

layer-3

Page 21
prEN ### 1997

N_Groupdata.con(destination_address, n_status)
destination_address: group address of the destination
n_status: OK; N_Groupdata sent successfully with L_Data

service
 not_ok; transmission of the associated L_Data

request frame didn’t succeed

N_Groupdata.ind(source_address, destination_address, class, n_sdu)
source_address: physical address of the EIB end device that

requested the N_Groupdata service
destination_address: the addressed group address of this device
class: system, alarm, high or low priority
n_sdu: this is the user data that has been

transferred by layer-3

8.2.3 N_Broadcast Service

The N_Broadcast service is confirmed locally. The local user of layer-3 prepares an
NSDU for all the remote user of layer-3, the destination is addressed with the broadcast
address (destination address = ´0´ and DAF = ´1´). The local user of layer-3 applies the
N_Broadcast.req primitive to pass the NSDU to the local layer-3. The local layer-3
accepts the service request and passes it with an L_Data.req with DAF = ´1´ to the local
layer-2.

The local layer-3 is encodes the NSDU to the LSDU by adding the routing_counter, the
argument MAC-Address for broadcast and mapping the arguments destination_address
and class to the corresponding arguments destination_address and class of the
L_Data.req primitive.

The remote layer-3 is mapping an L_Data.ind primitive with DAF = ´1´ and
destination_address = ´0´ to a N_Broadcast.ind primitive. The argument l_sdu is
mapped to the argument n_sdu by removing the routing counter, the argument class is
mapped to the corresponding argument class of the N_Broadcast.ind primitive. The
argument MAC-Address from the remote layer-2 is dropped.

The local layer-3 is mapping the L_Data.con primitive to the N_Broadcast.con
primitive. The argument l_status is mapped to the corresponding argument n_status of
the N_Broadcast.con primitive. The argument MAC-Address from the remote layer-2 is
dropped.
N_Broadcast.req(class, n_sdu)
class: system, alarm, high or low priority
n_sdu: this is the user data to be transferred by

layer-3

N_Broadcast.con(n_status)
n_status: OK; N_Broadcast sent successfully with L_Data

service
 not_ok; transmission of the associated L_Data

request frame didn’t succeed

N_Broadcast.ind(source_address, class, n_sdu)
source_address: physical address of the EIB end device that

requested the N_Broadcast service
class: system, alarm, high or low priority
n_sdu: this is the user data that has been

transferred by layer-3

8.3 Parameters of Layer-3

The layer-3 only needs information about the device: either EIB end device or bridge or
router.

Page 22
prEN ### 1997

8.4 State Machine of Layer-3

The state machine of layer-3 in an EIB end device is mapping services as described
above. The value of the routing counter is set to six when layer-4 is applying a layer-3
request primitive.

8.5 The Layer-3 of a Bridge

Bridges and routers do also have a layer-3 but their layer-3 state machine differs from
EIB end devices.

If an L_Data.ind with DAF = ´1´ and routing_counter in [1...6] is received, the bridge
decrements the routing_counter and transmits the service parameters of the L_Data.ind
with the corresponding service parameters (source address, destination_address, DAF,
class, l_sdu) of a L_Data.req to the other side.

If an L_Data.ind with DAF = ´0´ or routing_counter equals seven is received, the bridge
transmits the service parameters of the L_Data.ind with the corresponding service
parameters of a L_Data.req to the other side.

Otherwise the layer-3 of the bridge is discarding the L_Data.ind.

8.6 The Layer-3 of a Router

Routers behave like bridges but there are two additional actions:

− checks if the destination address equals to the physical address of the router, then
identical to EIB end device

− checks if the destination address is a group address and is listed in the routing table

If an L_Data.ind with DAF = ´1´ and routing_counter in [1...6] is received and the
destination address is listed in the routing table, the router decrements the
routing_counter and transmits the service parameters of the L_Data.ind with the
corresponding service parameters of a L_Data.req to the other side.

If an L_Data.ind with DAF = ´1´ and the routing_counter equals seven is received and
the destination address is listed in the routing table, the router transmits the service
parameters of the L_Data.ind with the corresponding service parameters of a L_Data.req
to the other side.

If an L_Data.ind with DAF = ´0´ and destination address equal to the physical address of
the router is received, the router is processing the L_Data.ind identical to an EIB end
device.

If an L_Data.ind with DAF = ´0´ is received and the destination address is listed in the
routing table, the router transmits the service parameters of the L_Data.ind with the
corresponding service parameters of a L_Data.req to the other side.

Otherwise the layer-3 of the router is discarding the L_Data.ind.

Page 23
prEN ### 1997

THIS PAGE LEFT BLANK INTENTIONALLY

Page 24
prEN ### 1997

9 Transport Layer

9.1 Communication Relationships

The transport layer (layer-4) provides a reliable data transmission over communication
relationships. Communication relationships are logical channels that connect users of
layer-4 with each other. Layer-4 provides four different types of communication
relationships:

− one-to-many connection-less (multicast)

− one-to-all connection-less (broadcast)

− one-to-one connection-less

− one-to-one connection-oriented

Communication relationships are identified by a local communication relationship
identifier (cr_id) which shall be unique for all communication relationships of this EIB
end device. The layer-4 converts the cr_id into the destination_address and vice versa
using a communication relationship list. Every communication relationship type
provides specific layer-4 services.

T_Data.req

Transport Layer

one-to-one
connection-

less
Multicast Broadcast one-to-one connection-oriented

Transport Layer

Remote Layer-4 UserLocal Layer-4 User

TPDU

T_ Data_Unack.con

T_Data_Unack.req

one-to-one
connection-

less

T_ Groupdata.con
T_Groupdata.req

Multicast

T_Broadcast.con
T_ Broadcast.req

Broadcast

T_Connect.con
T_Connect.req

T_Data.con

T_Disconnect.con
T_Disconnect.req

one-to-one connection-oriented

T_ Data_Unack.ind
T_ Groupdata.ind

T_ Broadcast.ind T_Connect.ind
T_Data.ind

T_Disconnect.ind

Figure 19: Interactivity of the Transport Layer

9.1.1 One-to-many connection-less (Multicast) Communication Relationship

A multicast communication relationship connects group-objects that belong to the same
group. Group-objects may be distributed to a number of EIB end devices. Each EIB end
device may be transmitter. More than one group-object may exist in an EIB end device.
The group-objects of an EIB end device may belong to the same or to different groups.

The following layer-4 service can only be used on a multicast communication
relationship:

− T_Groupdata

9.1.2 One-to-all connection-less (Broadcast) Communication Relationship

The broadcast communication relationship connects a single EIB end device with all
communication partners. The single EIB end device is always a transmitter, the
communication partners are always receiver.

The following layer-4 service can only be used on a broadcast communication
relationship:

− T_Broadcast

Page 25
prEN ### 1997

9.1.3 One-to-one connection-less Communication Relationship

Every EIB end device has a one-to-one connection-less communication relationship
with every other EIB end device. A one-to-one connection-less communication
relationships shall not be used if the connection-oriented communication relationship is
established to the same partner at the same time. The following layer-4 service can only
be used on a one-to-one connection-less communication relationship:

− T_Data_Unack

9.1.4 One-to-one connection-oriented Communication Relationship

An EIB end device only has a single one-to-one connection-oriented communication
relationship. The following layer-4 services can only be used on a connection-oriented
communication relationship:

− T_Connect

− T_Data

− T_Disconnect

The user of this type shall establish the connection before it can be used. The user may
release the connection if it isn’t needed any more. The layer-4 provides a supervision of
the connection with a connection-time-out-timer. If the timer expires or if an
unrecoverable error occurs, the layer-4 will release the connection immediately. Layer-4
also provides a reliable end-to-end transmission over bridges and routers on the
connection-oriented communication relationship. T_Data services are repeated up to
three times if the T_Data.req is not acknowledged from the remote layer-4 entity within
an acknowledgment-time-out-time. Repetitions of T_Data services are detected using a
sequence number. Parallel services are not allowed on a connection-oriented
communication relationship. The connection-oriented communication relationship is
processed according to the layer-4 state machine described in 9.3.4.

9.2 TPDU

The TPDU is shown in the following figure (Figure 20).

Octet 11 Octet 12 Octet 13 ...

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

tra
ns

po
rt

co
nt

ro
l f

ie
ld

" " " " "
AP

C
I

" " "
da

ta
/A

PC
I

da
ta

/A
PC

I
da

ta
/A

PC
I

da
ta

/A
PC

I
da

ta
/A

PC
I

da
ta

/A
PC

I
da

ta
da

ta
da

ta
da

ta
da

ta
da

ta
da

ta
da

ta
da

ta
da

ta
da

ta
da

ta
da

ta
da

ta
da

ta
da

ta

L-4 L-7

application user data

TPDU

TSDU

application control
field

Figure 20: Format of the TPDU

The TPDU corresponds to the NPDU, but reduced by the network control field. The
transport control field is encoded and decoded by layer-4 and contains the layer-4
service codes and the sequence_number:

Page 26
prEN ### 1997

Octet 10 Octet 11

transport control field

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

de
st

in
at

io
n_

ad
dr

es
s_

 fl
ag

 (
D

A
F

)

1 0 0 0 0 0 0 T_BOADCAST_DATA_REQ_PDU (Destination_Address=0)

1 0 0 0 0 0 0 T_GROUPDATA_REQ_PDU (Destination_Address<>0)

0 0 0 0 0 0 0 T_DATA_UNACK_REQ_PDU

0 0 1

S
eq

N
o

S
eq

N
o

S
eq

N
o

S
eq

N
o T_DATA_REQ_PDU

0 1 0 0 0 0 0 0 0 T_CONNECT_REQ_PDU

0 1 0 0 0 0 0 1 0 T_CONNECT_CONF_PDU

0 1 0 0 0 0 0 0 1 T_DISCONNECT_REQ_PDU

0 1 1

S
eq

N
o

S
eq

N
o

S
eq

N
o

S
eq

N
o 1 0 T_DATA_ACK_PDU

0 1 1

S
eq

N
o

S
eq

N
o

S
eq

N
o

S
eq

N
o 1 1 T_DATA_NAK_PDU

Figure 21: Transport Control Field

9.3 Transport Layer Services

All the layer-4 services provide a confirmation to the requester (user of layer-4). The
confirmation of the T_Data service indicates that the remote layer-4 entity did
acknowledge the T_Data.req. The confirmation of the other layer-4 services is caused by
the local confirmation of layer-2.

The user of layer-4 shall not request a service primitive before the preceding request is
confirmed by layer-4, i.e. no parallel services allowed.

9.3.1 T_Groupdata Service

The T_Groupdata service is applied by the user of layer-4, to transmit a TSDU over a
multicast communication relationship to one or more remote partners. The T_Groupdata
service is neither acknowledged nor confirmed by the remote layer-4 entity. The
confirmation is a local confirmation caused by the L_Data.con of layer-2.

The local user of layer-4 is preparing a TSDU for the remote user. The local user of
layer-4 is applying the T_Groupdata.req primitive to pass the TSDU to the local layer-4.
The destination is defined by the cr_id. The local layer-4 is mapping the cr_id to the
group address using a communication reference list. The local layer-4 accepts the
service request and passes it with a N_Groupdata.req to the local layer-3.

The local layer-4 is encoding the TSDU to the NSDU and is mapping the arguments
group_address and class to the corresponding arguments destination_address and class
of the N_Groupdata.req primitive.

The remote layer-4 is mapping a N_Groupdata.ind primitive to a T_Groupdata.ind
primitive. The remote layer-4 is mapping the destination_address to the cr_id using a
communication reference list. The argument n_sdu is mapped to the argument t_sdu, the
argument class is mapped to the corresponding argument class of the T_Groupdata.ind
primitive.

Prior to passing a T_Groupdata.con primitive to the local user, the local layer-4 needs a
N_Groupdata.con from the local layer-3. If the confirmation is positive (n_status = OK),

Page 27
prEN ### 1997

the local layer-4 passes a positive T_Groupdata.con (t_status = OK) to the local user. If
the confirmation is negative (n_status = not_ok), the local layer-4 passes a
T_Groupdata.con (t_status = not_ok) to the local user indicating that the transmission of
the associated N_Groupdata.req didn’t succeed.
T_Groupdata.req(cr_id, class, tsdu)
cr_id: identifier of the communication relationship
class: system, alarm, high or low priority
tsdu: this is the user data to be transferred by

layer-4

T_Groupdata.con(cr_id, t_status)
cr_id: identifier of the communication relationship
t_status: OK; T_Groupdata sent successfully with

N_Groupdata service
 not_ok; transmission of the associated N_Groupdata

request frame didn’t succeed

T_Groupdata.ind(cr_id, class, t_sdu)
cr_id: identifier of the communication relationship
class: system, alarm, high or low priority
t_sdu: this is the user data that has been

transferred by layer-4

9.3.2 T_Broadcast Service

The T_Broadcast service is applied by the user of layer-4, to transmit a TSDU over a
connection-less communication relationship to all remote partners. The T_Broadcast
service is neither acknowledged nor confirmed by the remote layer-4 entity. The
confirmation is a local confirmation caused by the L_Data.con of layer-2.

The local user of layer-4 is preparing a TSDU for all the remote users of layer-4. The
local user of layer-4 is applying the T_Broadcast.req primitive to pass the TSDU to the
local layer-4. The local layer-4 accepts the service request and passes it with a
N_Broadcast.req to the local layer-3.

The local layer-4 is encoding the TSDU to the NSDU and is mapping the argument class
to the corresponding argument class of the N_Broadcast.req primitive.

The remote layer-4 is mapping an N_Broadcast.ind primitive to a T_Broadcast.ind
primitive. The argument n_sdu is mapped to the argument t_sdu, the argument class is
mapped to the corresponding argument class of the T_Broadcast.ind primitive.

Prior to passing a T_Broadcast.con primitive to the local user, the local layer-4 needs a
N_Broadcast.con from the local layer-3. If the confirmation is positive (n_status = OK),
the local layer-4 passes a positive T_Data.con (t_status = OK) to the local user. If the
confirmation is negative (n_status = not_ok), the local layer-4 passes a T_Data.con
(t_status = not_ok) to the local user indicating that the transmission of the associated
N_Broadcast.req didn’t succeed.
T_Broadcast.req(class, tsdu)
class: system, alarm, high or low priority
tsdu: this is the user data to be transferred by

layer-4

T_Broadcast.con(t_status)
t_status: OK; T_Broadcast sent successfully with

N_Broadcast service
 not_ok; transmission of the associated N_Broadcast

request frame didn’t succeed

Page 28
prEN ### 1997

T_Broadcast.ind(source_address, class, t_sdu)
source_address: physical address of the EIB end device that

requested the T_Broadcast service
class: system, alarm, high or low priority
t_sdu: this is the user data that has been

transferred by layer-4

9.3.3 T_Data_Unack

The T_Data_Unack service is applied by the user of layer-4, to transmit a TSDU over a
connection-less one-to-one communication relationship to exactly one remote partner.
The T_Data_Unack service is neither acknowledged nor confirmed by the remote
layer-4 entity. The confirmation is a local confirmation caused by the L_Data.con of
layer-2.

The local user of layer-4 is preparing a TSDU for the remote user. The local user of
layer-4 is applying the T_Data_Unack.req primitive to pass the TSDU to the local
layer-4. The destination is defined by the destination_address.

The local layer-4 is encoding the TSDU to the NSDU and is mapping the arguments
destination_address and class to the corresponding arguments of the N_Data.req
primitive.

The remote layer-4 is mapping an N_Data.ind primitive containing a
T_DATA_UNACK_PDU to a T_Data_Unack.ind primitive. The argument n_sdu is
mapped to the argument t_sdu, the arguments class and physical address are mapped to
the corresponding argument class of the T_Data_Unack.ind primitive.

Prior to passing a T_Data_Unack.con primitive to the local user, the local layer-4 needs
a N_Data.con from the local layer-3. If the confirmation is positive (n_status = OK), the
local layer-4 passes a positive T_Data_Unack.con (t_status = OK) to the local user. If
the confirmation is negative (n_status = not_ok), the local layer-4 passes a
T_Data_Unack.con (t_status = not_ok) to the local user indicating that the transmission
of the associated N_Data.req didn’t succeed.
T_Data_Unack.req(address, class, tsdu)
destination_address: physical address of the device is addressed.
class: system, alarm, high or low priority
tsdu: this is the user data to be transferred by

layer-4

T_Data_Unack.con(address, n_status)
destination_address: physical address of the device is addressed
n_status: OK; T_Data_Unack sent successfully with N_Data

service
 not_ok; transmission of the associated N_Data

request frame didn’t succeed

T_Data_Unack.ind(address, class, t_sdu)
destination_address: physical address of the device which

initiates the service
class: system, alarm, high or low priority
t_sdu: this is the user data that has been

transferred by layer-4

9.3.4 T_Connect Service

The T_Connect service is applied by the user of layer-4, to establish a transport
connection on a connection-oriented communication relationship. The T_Connect
primitives are mapped to N_Data primitives and vice versa according to the layer-4 state
machine described in 9.3.4. The local layer-4 accepts the service request only if the
connection is not established (state CLOSED) and tries to send the
T_CONNECT_REQ_PDU to the remote layer-4 with a N_Data.req. The destination

Page 29
prEN ### 1997

address shall be a physical address. The T_Connect service is confirmed by the remote
layer-4 with a N_Data primitives with a T_Connect.confirm PDU. The local
confirmation from the local layer-3 is droped.
T_Connect.req(address)
address: physical address of the device where the

transport connection shall be established

T_Connect.con(cr_id) connection is established,
cr_id: identifier of the communication relationship

T_Connect.ind(cr_id) connection established, remote initiator
cr_id: identifier of the communication relationship

9.3.5 T_Disconnect Service

The T_Disconnect service is applied by the user of layer-4, to release a transport
connection on a connection-oriented communication relationship. The T_Disconnect
primitives are mapped to N_Data primitives and vice versa according to the layer-4 state
machine described in 9.3.4. The T_Disconnect service is neither acknowledged nor
confirmed by the remote layer-4 entity. The confirmation is a local confirmation caused
by the L_Data.con of layer-2.

The T_Disconnect.ind primitive may also be caused by the layer-4 entity in order to
indicate a protocol error.
T_Disconnect.req(cr_id)
cr_id: identifier of the communication relationship

to be released

T_Disconnect.con(cr_id) Connection released, state = CLOSED

T_Disconnect.ind(cr_id) Connection released, state = CLOSED, caused
by an error detected by the local layer-4 or
a T_DISCONNECT_REQ_PDU was received

9.3.6 T_Data Service

The T_Data service is applied by the user of layer-4, to transmit a TSDU over a
transport connection on a connection-oriented communication relationship to a remote
partner. The T_Data service is acknowledged with a T_DATA_ACK_PDU by the
remote layer-4 entity. The T_ Data primitives are mapped to N_Data primitives and vice
versa according to the layer-4 state machine described in 9.3.4.

The local user of layer-4 is preparing a TSDU for the remote user. The local user of
layer-4 is applying the T_Data.req primitive to pass the TSDU to the local layer-4. The
local layer-4 accepts the service request only if the connection is established (state
OPEN_IDLE) and tries to send the TSDU to the remote layer-4 with a N_Data.req. The
destination address shall be a physical address. The local layer-4 passes a T_Data.con
primitive to the local user that indicates either a correct data transfer or it passes a
T_Disconnect.ind primitive to the local user that indicates an erroneous data transfer.

Prior to passing the confirmation to the local user, the local layer-4 needs an
acknowledgment from the remote layer-4. If the acknowledgment is a positive
acknowledgment (T_DATA_ACK_PDU), the local layer-4 passes a T_Data.con to the
local user. If the acknowledgment is a negative acknowledgment
(T_DATA_NAK_PDU), the local layer-4 passes a T_Disconnect.ind primitive to the
local user indicating that the connection is released (state = CLOSED) caused by an
error.

Page 30
prEN ### 1997

The remote layer-4 will only accept the N_Data.ind with the T_DATA_REQ_PDU
received, if the connection is established, i.e. in the states OPEN_IDLE,
OPEN_WAIT_FOR_DATA_ACK, OPEN_REPEAT_T_DATA_REQ. Therefore
mutual T_Data services are allowed on a connection-oriented communication
relationship.

The local layer-4 repeats the transmission of the T_DATA_REQ_PDU up to 3 times
with an acknowledgment time-out time of 3 s. If it fails, the local layer-4 passes a
T_Disconnect.ind primitive to the local user indicating that the connection is released
(state = CLOSED).
T_Data.req(cr_id, class, tsdu)
cr_id: identifier of the communication relationship
class: system, alarm, high or low priority
tsdu: this is the user data to be transferred by

layer-4

T_Data.con(cr_id) transmission successful
cr_id: identifier of the communication relationship

T_Data.ind(cr_id, class, tsdu)
cr_id: identifier of the communication relationship
class: system, alarm, high or low priority
tsdu: this is the user data that has been

transferred by layer-4

9.4 Parameters of Layer-4

The communication relationship list is the only parameter of layer-4. The
implementation of this parameter, e.g. table or algorithmic is up to the manufacturer.
The latter could be achieved by mapping the address of the communication partner
(group address or physical address with DAF flag) to a 13 bit cr_id.

Communication relationship list: maps cr_ids to a destination addresses and vice
versa.

9.5 State Machine of Layer-4

The layer-4 state machine is processing the services T_Connect, T_Disconnect and
T_Data. Other layer-4 services are directly mapped as described for each individual
service independent from the actual state of the layer-4 state machine. Invalid PDUs are
ignored.

Events caused by the user of layer-4:

T_Connect.req from user
\-

T_Disconnect.req from user
\-

T_Data.req from user
\-

Events caused inside layer-4:

Connection_Timeout
\-

Acknowledgement_Timeout
\-

Events caused by layer-3:

Page 31
prEN ### 1997

N_Data.ind from layer-3
\source_address<>connection_address

N_Data.ind from layer-3
\source_address=connection_address & nsdu=T_CONNECT_REQ_PDU

N_Data.ind from layer-3
\source_address=connection_address & nsdu=T_CONNECT_CON_PDU

N_Data.ind from layer-3
\source_address=connection_address & nsdu=T_DISCONNECT_REQ_PDU

N_Data.ind from layer-3
\source_address=connection_address & nsdu=T_DATA_REQ_PDU &

N_Data.ind from layer-3
\source_address=connection_address & nsdu=T_DATA_ACK_PDU

N_Data.ind from layer-3
\source_address=connection_address & nsdu=T_DATA_NAK_PDU

N_Data.con from layer-3
\-

Local variables of layer-4:

connection_address used to store the actual physical address of the
partner

SeqNoSend binary 4 bit value, used to handle the sequence
number of the T_DATA_XXX_PDU

SeqNoRcv binary 4 bit value, used to handle the sequence
number of the T_DATA_XXX_PDU

connection_timeout_timer time interval of 6 s;
starts with transition CLOSED→CONNECTING;

stops with transition
DISCONNECTING→CLOSED;
restarts if N_Data.req is applied in the state machine
or N_Data.ind received with
source_address=connection_address

acknowledgment_timeout_timer time interval of 3 s;
starts with transition
OPEN_IDLE→OPEN_WAIT_FOR_T_DATA_AC
K;
stops if N_DATA.ind &
source_address=connection_address &
nsdu=T_DATA_ACK_PDU &
SeqNo_of_PDU=SeqNoRcv received or with
transition into →CLOSED

rep_count used to count the number of T_DATA_REQ
repetitions

The user of layer-4 always gets a confirmation for a request. When reading the state
machine, keep in mind that the user cannot request a second service primitive before
getting the confirmation to the preceding primitive, i.e. no parallel services allowed.

The event N_Data.con after the transmission of a N_Data.req is not described in all of
the states. In states where this event is not mentioned, a subordinate state is active where
the state machine is waiting for either a time-out or the a N_Data.con. As soon as the
N_Data.con or the time-out appears, the state machine is switching back to the
associated superordinate state.

Page 32
prEN ### 1997

CURRENT STATE TRANSITION NAME NEXT STATE
Event

\Condition
=> Action

POWER_ON 1.START CLOSED
-

\-
=> SeqNoRcv = 0

SeqNoSend = 0
stop acknowledgment_timeout_timer
rep_count=0

CLOSED 2.T_CONNECT_REQ CONNECTING
T_Connect.req from User

\-
=> connection_address = destination_address

N_Data.req(address=destination_address,class=system,
 n_sdu=T_CONNECT_REQ_PDU)
start connectiontimer

CLOSED 3.T_CONNECT_IND OPEN_IDLE
N_Data.ind from layer-3

\nsdu=T_CONNECT_REQ_PDU
=> connection_address = source_address

T_Connect.ind to the user
N_Data.req(address=destination_address,class=system,
 n_sdu=T_CONNECT_CONF_PDU)
start connectiontimer

CONNECTING 4.N_DATA_CON CONNECTING
N_Data.conf from layer-3

\source_address=connection_address & nsdu=T_CONNECT_IND_PDU
=> -

CONNECTING 5.CONNECTION-TIME-OUT CLOSED
Connection_Timeout

\-
=> T_Disconnect.ind to the user

N_Data.req(address=connection_address,class=system,
 n_sdu=T_DISCONNECT_REQ_PDU)

CONNECTING 6.T_CONNECT_CON OPEN_IDLE
N_Data.ind from layer-3

\source_address=connection_address & nsdu=T_CONNECT_CONF_PDU
=> T_Connect.con to the user

restart connectiontimer

OPEN_??? 7.T_DATA_IND_OK OPEN_???
N_Data.ind from layer-3

\source_address=connection_address & nsdu=T_DATA_REQ_PDU &
SeqNo_of_PDU=SeqNoRcv
=> Copy SeqNoRcv to T_DATA_ACK_PDU

 N_Data.req(address=connection_address,class=system,
 n_sdu=T_DATA_ACK_PDU)
Increment SeqNoRcv
T_Data.ind to the user
restart connectiontimer

Page 33
prEN ### 1997

OPEN_??? 8.T_DATA_IND_REPEATED OPEN_???
N_Data.ind from layer-3

\source_address=connection_address & nsdu=T_DATA_REQ_PDU &
SeqNo_of_PDU=SeqNoRcv-1
=> Copy SeqNo_of_PDU to T_DATA_ACK_PDU

N_Data.req(address=connection_address,class=system,
 n_sdu=T_DATA_ACK_PDU)
restart connectiontimer

OPEN_??? 9.T_DATA_IND_NOTOK OPEN_???
N_Data.ind from layer-3

\source_address=connection_address & nsdu=T_DATA_REQ_PDU &
SeqNo_of_PDU<>SeqNoRcv or SeqNo_of_PDU<>SeqNoRcv-1
=> Copy SeqNo_of_PDU to T_DATA_NAK_PDU

N_Data.req(address=connection_address,class=system,
 n_sdu=T_DATA_NAK_PDU)

OPEN_??? 10.T_DISCONNECT_IND CLOSED
N_Data.ind from layer-3

\source_address=connection_address & nsdu=T_DISCONNECT_REQ_PDU
=> T_Disconnect.ind to the user

OPEN_IDLE 11.CONNECTION_TIMEOUT CLOSED
Connection_Timeout

\-
=> N_Data.req(address=connection_address,class=system,

 n_sdu=T_DISCONNECT_REQ_PDU)
T_Disconnect.ind to the user

OPEN_IDLE 12.T_DATA_REQ OPEN_WAIT_FOR_T_DATA_ACK
T_Data.req

\-
=> copy SeqNoSend to T_DATA_REQ_PDU

start acknowledgement_timeout_timer
N_Data.req(address=connection_address,class,
 n_sdu=T_DATA_REQ_PDU)
restart connectiontimer

OPEN_IDLE 13.T_DISCONNECT_REQ CLOSED
T_Disconnect.req

\-
=> N_Data.req(address=connection_address,class=system,

 n_sdu=T_DISCONNECT_REQ_PDU)

OPEN_WAIT_FOR_T_DATA_ACK 14.T_DATA_ACK OPEN_IDLE
N_Data.ind from layer-3

\source_address=connection_address & nsdu=T_DATA_ACK_PDU &
SeqNo_of_PDU=SeqNoSend
=> stop acknowledgement_timeout_timer

Increment SeqNoSend
T_Data.con(t_status=ok) to the user
restart connectiontimer

OPEN_WAIT_FOR_T_DATA_ACK 15.T_DATA_ACK_NOTOK OPEN_WAIT_FOR_T_DATA_ACK
N_Data.ind from layer-3

\source_address=connection_address & nsdu=T_DATA_ACK_PDU &
SeqNo_of_PDU<>SeqNoSend
=> discard T_DATA_ACK_PDU

OPEN_WAIT_FOR_T_DATA_ACK 16.ACK-TIMEOUT123 OPEN_WAIT_FOR_T_DATA_ACK
Acknowledgement_Timeout123

\rep_count < 3
=> start acknowledgement_timeout_timer

repeat last N_DATA.req(address=connection_address,class,
 n_sdu=T_DATA_REQ_PDU)
increment rep_count

Page 34
prEN ### 1997

OPEN_WAIT_FOR_T_DATA_ACK 17.T_DATA_NAK_NOT_OK CLOSED
N_Data.ind from layer-3

\-
=>discard T_DATA_NACK_PDU

OPEN_WAIT_FOR_T_DATA_ACK 18.T_DATA_NAK_OK OPEN_WAIT_FOR_T_DATA_ACK
N_Data.ind from layer-3

\source_address=connection_address & nsdu=T_DATA_NAK_PDU &
 rep_count < 3 &SeqNo_of_PDU=SeqNoSend
=> start acknowledgement_timeout_timer

repeat last N_DATA.req(address=connection_address,class,
 n_sdu=T_DATA_REQ_PDU)
increment rep_count

OPEN_WAIT_FOR_T_DATA_ACK 19. T_DATA_NAK_OK CLOSED
N_Data.ind from layer-3

\source_address=connection_address & nsdu=T_DATA_NAK_PDU &
 rep_count = 3 &SeqNo_of_PDU=SeqNoSend
=> stop acknowledgement_timeout_timer

rep_count=0
N_Data.req(address=connection_address,class=system,
 n_sdu=T_DISCONNECT_REQ_PDU)
T_DISCONNECT_IND to User

OPEN_WAIT_FOR_T_DATA_ACK 20.ACK-TIMEOUT4 CLOSED
Acknowledgement_Timeout 4

\rep_count=3
=> stop acknowledgement_timeout_timer

rep_count=0
N_Data.req(address=connection_address,class=system,
 n_sdu=T_DISCONNECT_REQ_PDU)
T_DISCONNECT_IND to User

Note : Received N_Data.ind PDUs with address <> connection address and n_sdu =
T_DATA forced a N_Data.req(address=sourceaddrss,class=system,
n_sdu=T_DISCONNECT_REQ_PDU)

Page 35
prEN ### 1997

T_DATA_NAK_OK

ACKNOWLEDGEMENT_
TIMEOUT123

N_DATA_CON

CONNECTION_
TIMEOUT

POWER_ON

CLOSED

CONNECTING

OPEN_IDLE

OPEN_WAIT_FO
RT_DATA_ACK

T_DATA_IND
_OK

T_DATA_IND
_REPEATED

T_DATA_IND
_NOTOK

T_DISCONNECT
_REQ

T_DATA_IND_OK

T_DATA_ACK

T_CONNECT_IND

CONNECTION_
TIMEOUT

T_DATA_NAK_OK4/
NOT_OK

ACKNOWLEDGEMENT
_

TIMEOUT4

T_DATA_ACK
_NOTOK

T_DATA_REQ

T_DATA_IND_NOTOK

T_DATA_IND
_REPEATED

T_DISCONNECT
_IND

T_CONNECT_REQ

T_CONNECT_CON

start

Figure 22: State Machine of Layer-4

Page 36
prEN ### 1997

THIS PAGE LEFT BLANK INTENTIONALLY

Page 37
prEN ### 1997

10 Session Layer

Empty.

11 Presentation Layer

Empty.

Page 38
prEN ### 1997

THIS PAGE LEFT BLANK INTENTIONALLY

Page 39
prEN ### 1997

12 Application Layer

The layer-7 provides a large variety of application services to the application process.
Application processes in different EIB end devices interoperate by using services of
layer-7 over communication relationships. According to layer-4, different kinds of
communication relationships exist:

− one-to-many connection-less (multicast)

− one-to-all connection-less (broadcast)

− one-to-one connection-less

− one-to-one connection-oriented

Depending on the type of the communication relationship, different layer-7 services are
offered (Figure 23). Some services can be used on one-to-one connection-oriented, as
well as one-to-one connection-less communication relationships, although layer-7
services are always mapped to layer-4 services depending on the type of the
communication relationship.

In layer-7 as well as in layer-4 communication relationships are identified by a local
communication relationship identifier (cr_id) provided by layer-4.

All the layer-7 services provide a confirmation to the requester (user of layer-7).

Application Layer

Remote Layer-7 User

Local Layer-7 User

APDU

one-to-one connection-lessMulticast Broadcast one-to-one connection-
oriented

A_Read_Group.req/con

A_Write_Group.req/con

A_Read_Group.ind/res

A_Write_Group.ind

A_Read_Adc.req/con

A_Read_Memory.req/con

A_Write_Memory.req/con

A_Read_Mask_Version.req/con

A_Restart.req/con

A_Write_Memory_Bit.req/con

A_Authorize.req/con

A_Setkey.req/con

A_Read_Adc.ind/res

A_Read_Memory.ind/res

A_Write_Memory.ind/res

A_Read_Mask_Version.ind/res

A_Restart.ind

A_Write_Memory_Bit.ind/res

A_Authorize.ind/res

A_Setkey.ind/res

A_Set_Physaddr.req/con

A_Read_Physaddr.req/con

A_Read_Physaddr_Serno.req/con

A_Set_Physaddr_Serno.req/con

A_Service_Inormation.req/con

A_Set_Sys_ID.req

A_Read_Sys_ID.req/con

A_Read_Sys_ID_Selct.req

A_Set_Physaddr.ind

A_Read_Physaddr.ind/res

A_Read_Physaddr_Serno.ind/res

A_Set_Physaddr_Serno.ind

A_Service_Inormation.ind

A_Set_Sys_ID.ind

A_Read_Sys_ID.ind/res

A_Read_Sys_ID_Selct.ind

A_Read_Property_Value.req/con

A_Write_Property_Value.req/con

A_Read_ Property_Description.req/con

A_FileRead_Property.req/con

A_FileWrite_Property.req/con

A_URead_Memory.req/con

A_UWrite_Memory.req/con

A_UWrite_Memory_Bit.req/con

A_URead_MfactInfo.req/con

A_Read_Property_Value.ind/res

A_Write_Property_Value.ind/res

A_Read_Property_Description.ind/res

A_FileRead_Property.ind/res

A_FileWrite_Property.ind/res

A_URead_Memory.ind/res

A_UWrite_Memory.ind/res

A_UWrite_Memory_Bit.ind/res

A_URead_MfactInfo.ind/res

Application Layer

one-to-one connection-lessMulticast Broadcast one-to-one connection-
oriented

Figure 23: Interactivity of the Application Layer

Page 40
prEN ### 1997

12.1 APDU

The APDU is shown in the following figure (Figure 24).

Octet 11 Octet 12 Octet 13 ...

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

tra
ns

po
rt

co
nt

ro
l f

ie
ld

" " " " "
AP

C
I

AP
C

I
AP

C
I

AP
C

I
da

ta
/A

PC
I

da
ta

/A
PC

I
da

ta
/A

PC
I

da
ta

/A
PC

I
da

ta
/A

PC
I

da
ta

/A
PC

I
da

ta
/A

PC
I

da
ta

/A
PC

I
da

ta
/A

PC
I

da
ta

/A
PC

I
da

ta
/A

PC
I

da
ta

/A
PC

I
da

ta
/A

PC
I

da
ta

/A
PC

I
da

ta
da

ta
da

ta
da

ta
da

ta
da

ta
da

ta
da

ta

L-4 L-7

APDU

application control field

Figure 24: Format of the APDU

The APDU corresponds to the TPDU, but reduced by the transport control field. The
application control field is encoded and decoded by layer-7 and contains the layer-7
service codes. The application control field has a variable length of 4 to 10 bits,
depending on the layer-7 service. The codes for the application control field are shown
in Figure 25. The complete PDU for each service primitive is shown in the description
of every service.

Page 41
prEN ### 1997

Octet 6 Octet 7
avai lable on

8 7 6 5 4 3 2 1 8 7 6 5 4 3 2 1 communicat ion re lat ionship type:

AP
C

I
AP

C
I

AP
C

I
AP

C
I

da
ta

/A
PC

I
da

ta
/A

PC
I

da
ta

/A
PC

I
da

ta
/A

PC
I

da
ta

/A
PC

I
da

ta
/A

PC
I

0 0 0 0 0 0 0 0 0 0 A _ R E A D _ V A L U E _ R E Q _ P D U M u lticast
0 0 0 1 A _ R E A D _ V A L U E _ R E S _ P D U "

0 0 1 0 A _ W R ITE_VALUE_REQ_PDU "

0 0 1 1 0 0 0 0 0 0 A _ S E T _ P H Y S A D D R _ R E Q _ P D U Broadcast

0 1 0 0 0 0 0 0 0 0 A _ R E A D _ P H Y S A D D R _ R E Q _ P D U "
0 1 0 1 0 0 0 0 0 0 A _ R E A D _ P H Y S A D D R _ R E S _ P D U "
1 1 1 1 0 1 1 1 0 0 A _ R E A D _ P H Y S A D D R _ S E R N O _ R E Q _ P D U "

1 1 1 1 0 1 1 1 0 1 A _ R E A D _ P H Y S A D D R _ S E R N O _ R E S _ P D U "
1 1 1 1 0 1 1 1 1 0 A _ S E T _ P H Y S A D D R _ S E R N O _ R E Q _ P D U "
1 1 1 1 0 1 1 1 1 1 A _ S E R V I C E _ I N O R M A T I O N _ R E Q _ P D U

"

1 1 1 1 1 0 0 0 0 0 A_SET_SYS_ ID_REQ_PDU "
1 1 1 1 1 0 0 0 0 1 A _ R E A D _ S Y S _ I D _ R E Q _ P D U "
1 1 1 1 1 0 0 0 1 0 A _ R E A D _ S Y S _ I D _ R E S _ P D U "

1 1 1 1 1 0 0 0 1 1 A_READ_SYS_ ID_SELCT IVE_REQ_PDU "

1 1 1 1 0 1 0 1 0 1 A _ R E A D _ P R O P E R T Y _ V A L U E _ R E Q _ P D U one-to-one connect ion- less/or iented

1 1 1 1 0 1 0 1 1 0 A _ R E A D _ P R O P E R T Y _ V A L U E _ R E S _ P D U "
1 1 1 1 0 1 0 1 1 1 A _ W R I T E _ P R O P E R T Y _ V A L U E _ R E Q _ P D U "
1 1 1 1 0 1 1 0 0 0 A _ R E A D _ P R O P E R T Y _ D E S C R I P T I O N _ R E Q _ P D U "

1 1 1 1 0 1 1 0 0 1 A _ R E A D _ P R O P E R T Y _ D E S C R I P T I O N _ R E S _ P D U "

1 0 1 1 0 0 0 0 0 0 A _ U R E A D _ M E M O R Y _ R E Q _ P D U "

1 0 1 1 0 0 0 0 0 1 A _ U R E A D _ M E M O R Y _ R E S _ P D U "
1 0 1 1 0 0 0 0 1 0 A _ U W R I T E _ M E M O R Y _ R E Q _ P D U "
1 0 1 1 0 0 0 1 0 0 A _ U W R I T E _ M E M O R Y _ B I T _ R E Q _ P D U "
1 0 1 1 0 0 0 1 0 1 A _ U R E A D _ M F A C T I N F O _ R E Q _ P D U "

1 0 1 1 0 0 0 1 1 0 A _ U R E A D _ M F A C T I N F O _ R E S _ P D U "

1 0 1 1 1 1 1 0 0 0 "

... manufacturer speci f ic area ...
1 0 1 1 1 1 1 1 1 0 "

0 1 1 0 A _ R E A D _ A D C _ R E Q _ P D U one-to-one connect ion-or iented
0 1 1 1 A _ R E A D _ A D C _ R E S _ P D U "
1 0 0 0 0 0 A _ R E A D _ M E M O R Y _ R E Q _ P D U "
1 0 0 1 0 0 A _ R E A D _ M E M O R Y _ R E S _ P D U "

1 0 1 0 0 0 A _ W R I T E _ M E M O R Y _ R E Q _ P D U "

1 1 0 0 0 0 0 0 0 0 A _ R E A D _ M A S K _ V E R S I O N _ R E Q _ P D U "

1 1 0 1 0 0 0 0 0 0 A _ R E A D _ M A S K _ V E R S I O N _ R E S _ P D U "
1 1 1 0 0 0 0 0 0 0 A _ R E S T A R T _ R E Q _ P D U "
1 1 1 1 0 1 0 0 0 0 A _ W R I T E _ M E M O R Y _ B I T _ R E Q _ P D U "
1 1 1 1 0 1 0 0 0 1 A _ A U T H O R I Z E _ R E Q _ P D U "

1 1 1 1 0 1 0 0 1 0 A _ A U T H O R I Z E _ R E S _ P D U "
1 1 1 1 0 1 0 0 1 1 A _ S E T K E Y _ R E Q _ P D U "
1 1 1 1 0 1 0 1 0 0 A _ S E T K E Y _ R E S _ P D U "

1 1 1 1 1 1 1 1 1 1 Escape for EIBnet

1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 A _ F I L E _ R E A D _ P R O P E R T Y _ R E Q _ P D U "
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 0 A _ F I L E _ R E A D _ P R O P E R T Y _ R E S _ P D U "
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 A _ F I L E _ W R I T E _ P R O P E R T Y _ R E Q _ P D U "
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 0 0 A _ F I L E _ W R I T E _ P R O P E R T Y _ R E S _ P D U "

Figure 25: Application Control Field

Page 42
prEN ### 1997

13 Application Layer Services

13.1 Layer-7 Services on Multicast Communication Relationships

A multicast communication relationship connects group-objects that belong to the same
group. Group-objects may be distributed to a number of EIB end devices. Each EIB end
device may be transmitter. More than one group-object may exist in an EIB end device.
Group-objects of an EIB end device may belong to the same or to different groups. Each
group has a network wide unique group address. The group address is mapped to a local
cr_id which is unique for the communication relationships of the EIB end device in
layer-4.

The group-objects of an EIB end device have a local group-object reference (go_ref)
that is unique for all the group-objects of the EIB end device. The layer-7 has an
association table (parameter of layer-7), that maps cr_ids to local group-object
references.

When the AL receives an A_Group-Service, it searches the cr_id in all entries of the
association-table and informs all the associated sap.

length: 4
2 0
1 1
3 2
1 2

association-table

sap 1
A_Group_Service
with cr_id =1 sap 2

 Figure 26:Receiving A_Group_Service

When a transmission is requested via a sap, the AL takes the cr_id from the association-table,
updates all the sap´s with the same cr_id and generates a A_Group-Service-Request.

length: 4
2 0
1 1
3 2
1 2

request on cr_id 1

association-tabl
e

Transmitt request via sap 1

update on cr_id 1

sap 2

 Figure 27:Transmitt request

13.1.1 A_Read_Group Service

The A_Read_Group.req primitive is applied by the user of layer-7, to receive an update
of the value of its group-object by making a communication partner respond with an
A_Read_Group.res, i.e. the service is confirmed by the remote application process. The
group-object is associated to the cr_id via the association table, i.e. with a
group_address (see layer-4). Other group members receive the A_Read_Group.res as
well.

Page 43
prEN ### 1997

The local layer-7 maps the go_ref to the cr_id, accepts the service request and passes it
with a T_Groupdata.req to the local layer-4. The user decides during configuration about
this mapping. The parameters cr_id and class are mapped to the corresponding
parameters of the T_Groupdata.req primitive, the tsdu is an
A_READ_GROUP_REQ_PDU.

The remote layer-7 is mapping a T_Groupdata.ind primitive with tsdu=
A_READ_GROUP_REQ_PDU to an A_Read_Group.ind primitive. The arguments
cr_id and class are mapped to the corresponding arguments of the A_Read_Group.ind
primitive. One A_Read_Group.ind primitive is generated per group-object that is
assigned to the corresponding cr_id (i.e. group address).

The application process may respond to the A_Read_Group.ind primitive with an
A_Read_Group.res primitive containing the value of the group-object. The user can
decide during configuration, whether or not the A_Read_Group.res primitive is
generated, although it makes sense that at least one member of the group generates the
A_Read_Group.res primitive.

Two different formats of the A_READ_GROUP_RES_PDU are used depending on the
length of the value. The maximum length of the value is 14 octets. Unused data bits
shall be set to zero.

Octet 11 Octet 12

...

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

AP
C

I
AP

C
I

AP
C

I
AP

C
I

da
ta

da
ta

da
ta

da
ta

da
ta

da
ta

da
ta

da
ta

0 0 0 1 0 0 0 0 0 0

Figure 28: A_READ_GROUP_RES_PDU
(length of group-object value is more than 6 bit)

Values that only consist of 6 bits or less have the following optimized
A_READ_GROUP_RES_PDU format:

Octet 11 Octet 12

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

AP
C

I
AP

C
I

AP
C

I
AP

C
I

da
ta

da
ta

da
ta

da
ta

da
ta

da
ta

0 0 0 1 d d d d d d

Figure 29: A_READ_GROUP_RES_PDU
(length of group-object value is 6 bit or less)

The remote layer-7 maps the go_ref to the cr_id, accepts the service response and passes
it with a T_Groupdata.req to the local layer-4. The parameters cr_id and class are
mapped to the corresponding parameters of the T_Groupdata.req primitive, the tsdu is a
A_READ_GROUP_RES_PDU.

The layer-7 is mapping a T_Groupdata.ind primitive with tsdu=
A_READ_GROUP_RES_PDU to an A_Read_Group.con primitive. The arguments
cr_id and class are mapped to the corresponding arguments of the A_Read_Group.con
primitive. More than one A_Read_Group.con primitive may occur depending on how
many group members have been configured to respond.

Page 44
prEN ### 1997

A_Read_Group.req(go_ref, class)
go_ref: local reference of the group member
class: system, alarm, high or low priority

A_Read_Group.ind(go_ref, class)
go_ref: local reference of the group member
class: system, alarm, high or low priority

A_Read_Group.con(go_ref, class, a_status)
go_ref: local reference of the group member
class: system, alarm, high or low priority
data: the value of the associated group-object

a_status: OK; the service sent successfully
 not OK; the transmission of the service didn’t

succeed

A_Read_Group.res(go_ref, class, data)
go_ref: local reference of the group member
class: system, alarm, high or low priority
data: the value of the associated group-object

13.1.2 A_Write_Group Service

The A_Write_Group.req primitive is applied by the user of layer-7, to send an update of
its group-object to all group members. The service is not confirmed by the remote
application process, the confirmation is caused by the local T_Groupdata.con. The
group-object is associated to the cr_id via the association table, i.e. with a
group_address (see layer-4). All group members receive the A_Write_Group.ind.

The local layer-7 maps the go_ref to the cr_id, accepts the service request and passes it
with a T_Groupdata.req to the local layer-4. The user decides during configuration about
this mapping. The parameters cr_id and class are mapped to the corresponding
parameters of the T_Groupdata.req primitive, the tsdu is a
A_WRITE_GROUP_REQ_PDU.

The remote layer-7 is mapping a T_Groupdata.ind primitive with tsdu=
A_WRITE_GROUP_REQ_PDU to an A_Write_Group.ind primitive. The arguments
cr_id and class are mapped to the corresponding arguments of the A_Write_Group.ind
primitive. One A_Write_Group.ind primitive is generated per group-object that is
assigned to the corresponding cr_id (i.e. groupaddress).

Two different formats of the A_WRITE_GROUP_REQ_PDU are used depending on
the length of the value. The maximum length of the value is 14 octets. Unused data bits
shall be set to zero.

Octet 11 Octet 12 ...

8 7 6 5 4 3 2 1 8 7 6 5 4 3 2 1 8 7 6 5 4 3 2 1

AP
C

I
AP

C
I

AP
C

I
AP

C
I

da
ta

da
ta

da
ta

da
ta

da
ta

da
ta

da
ta

da
ta

0 0 1 0 0 0 0 0 0 0

Figure 30: A_WRITE_GROUP_REQ_PDU
(length of group-object value is more than 6 bit)

Values that only consist of 6 bits or less have the following optimized
A_WRITE_GROUP_RES_PDU format:

Page 45
prEN ### 1997

Octet 11 Octet 12

8 7 6 5 4 3 2 1 8 7 6 5 4 3 2 1

AP
C

I
AP

C
I

AP
C

I
AP

C
I

0 0 1 0 d d d d d d d data

Figure 31: A_WRITE_GROUP_REQ_PDU
(length of group-object value is 6 bit or less)

Prior to passing an A_Write_Group.con primitive to the local application process, the
local layer-7 needs a T_Groupdata.con from the local layer-4. If the confirmation is
positive (t_status = OK), the local layer-7 passes a positive
A_Write_Group.con(a_status = OK) to the local application process. If the confirmation
is negative (t_status = not_ok), the local layer-7 passes a A_Write_Group.con (a_status
= not_ok) to the local user indicating that the transmission of the associated
T_Groupdata.req didn’t succeed.
A_Write_Group.req(go_ref, class, data)
go_ref: local reference of the group member
class: system, alarm, high or low priority
data: the value of the associated group-object

A_Write_Group.ind(go_ref, class, data)
go_ref: local reference of the group member
class: system, alarm, high or low priority
data: the value of the associated group-object

A_Write_Group.con(go_ref, class, data, a_status)
go_ref: local reference of the group member
class: system, alarm, high or low priority
data: the value of the associated group-object
a_status: OK; A_Write_Group sent successfully with

T_Groupdata service
 not_ok; transmission of the associated T_Groupdata

request frame didn’t succeed

Page 46
prEN ### 1997

14 Layer-7 Services on Broadcast Communication Relationships

A broadcast communication relationship is connection-less and connects one EIB end
device with all others.

14.1 A_Set_Physaddr Service

The A_Set_Physaddr.req primitive is applied by the user of layer-7, to modify the
physical address in a communication partner. The communication partner is not
identified in the service, i.e. the destination must be defined by selecting a destination
manually. This can be done by pressing a button on exactly one device that brings this
device into a ´programming´ mode, i.e. only the device where the button is pressed will
accept the A_Set_Physaddr.ind, others will ignore it. The way that a product is set to
´programming´ mode may be manufacturer specific.

The local layer-7 accepts the service request and passes it with a T_Broadcast.req to the
local layer-4. The parameter class is mapped to the corresponding parameter of the
T_Broadcast.req primitive, the tsdu is an A_SET_PHYSADDR_REQ_PDU.

Octet 11 Octet 12 Octet 13 Octet 14

new address (hi) new address (lo)

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

AP
C

I
AP

C
I

AP
C

I
AP

C
I

0 0 1 1 0 0 0 0 0 0

Figure 32: A_SET_PHYSADDR_REQ_PDU

The remote layer-7 is mapping a T_Broadcast.ind primitive with tsdu=
A_SET_PHYSADDR_REQ_PDU to an A_Set_Physaddr.ind primitive. The argument
class is mapped to the corresponding argument class of the A_Set_Physaddr.ind
primitive.

The application process shall ignore the A_Set_Physaddr.ind primitive if the device is
not in ´programming´ mode.
A_Set_Physaddr.req(class, newaddress)
class: system, alarm, high or low priority
newaddress: the new value of the physical address

A_Set_Physaddr.ind(class, newaddress)
class: system, alarm, high or low priority
newaddress: the new value of the physical address

A_Set_Physaddr.con(class, a_status)
class: system, alarm, high or low priority
a_status: OK; A_Set_Physaddr sent successfully with

T_Broadcast service
 not_ok; transmission of the associated T_Broadcast

request frame didn’t succeed

Prior to passing a A_Set_Physaddr.con primitive to the local application process, the
local layer-7 needs a T_Broadcast.con from the local layer-4. If the confirmation is
positive (t_status = OK), the local layer-7 passes a positive Set_Physaddr.con(a_status =
OK) to the local application process. If the confirmation is negative (t_status = not_ok),
the local layer-7 passes a A_Set_Physaddr.con (a_status = not_ok) to the local user
indicating that the transmission of the associated T_Broadcast.req didn’t succeed.

Page 47
prEN ### 1997

14.2 A_Read_Physaddr Service

The A_Read_Physaddr.req primitive is applied by the user of layer-7, to read the
physical address in a communication partner. The communication partner is not
identified in the service, i.e. the destination must be defined by selecting a destination
manually. This can be done by pressing a button on one or more device that brings these
device into a ´programming´ mode, i.e. only a device where the button is pressed will
accept the A_Read_Physaddr.ind, others will ignore it. The way that a product is set to
´programming´ mode may be manufacturer specific.

The local layer-7 accepts the service request and passes it with a T_Broadcast.req to the
local layer-4. The parameter class is mapped to the corresponding parameter of the
T_Broadcast.req primitive, the tsdu is an A_READ_PHYSADDR_REQ_PDU.

The remote layer-7 is mapping a T_Broadcast.ind primitive with tsdu=
A_READ_PHYSADDR_REQ_PDU to an A_Read_Physaddr.ind primitive. The
argument class is mapped to the corresponding argument class of the
A_Read_Physaddr.ind primitive.

The application process shall respond to the A_Read_Physaddr.ind primitive with an
A_Read_Physaddr.res primitive only if the device is in ´programming´ mode.

Octet 11 Octet 12

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

AP
C

I
AP

C
I

AP
C

I
AP

C
I

0 1 0 0 0 0 0 0 0 0

Figure 33: A_READ_PHYSADDR_REQ_PDU

Octet 11 Octet 12

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

AP
C

I
AP

C
I

AP
C

I
AP

C
I

0 1 0 1 0 0 0 0 0 0

Figure 34: A_READ_PHYSADDR_RES_PDU

The remote layer-7 accepts the service response and passes it with a T_Broadcast.req to
the layer-4, the tsdu is a A_READ_PHYSADDR_RES_PDU. The layer-7 is mapping a
T_Broadcast.ind primitive with tsdu= A_READ_PHYSADDR_RES_PDU to an
A_Read_Physaddr.con primitive. The argument class is mapped to the corresponding
argument class of the A_Read_Physaddr.con primitive.
A_Read_Physaddr.req(class)
class: system, alarm, high or low priority

A_Read_Physaddr.ind(class)
class: system, alarm, high or low priority

A_Read_Physaddr.con(class, a_status)
class: system, alarm, high or low priority
a_status: OK; A_Read_Physaddr sent successfully with

T_Broadcast service
 not_ok; transmission of the associated T_Broadcast

request frame didn’t succeed

Page 48
prEN ### 1997

A_Read_Physaddr.res(class, physical_address)
class: system, alarm, high or low priority
physical_address: the value of the physical address

14.3 A_Read_Physaddr_Serno Service

The A_Read_Physaddr_Serno.req primitive is applied by the user of layer-7, to read the
physical address in a communication partner. The communication partner is identified
using the unique serial number (6 octets) of the device.

The local layer-7 accepts the service request and passes it with a T_Broadcast.req to the
local layer-4. The parameter class is mapped to the corresponding parameter of the
T_Broadcast.req primitive, the tsdu is an A_READ_PHYSADDR_SERNO_REQ_PDU.

The remote layer-7 mapps a T_Broadcast.ind primitive with tsdu=
A_READ_PHYSADDR_SERNO_REQ_PDU to an A_Read_Physaddr_Serno.ind
primitive. The argument class is mapped to the corresponding argument class of the
A_Read_Physaddr_Serno.ind primitive.

Octet 11 Octet 12 Octet 13-18

serial number (6 octet)

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

AP
C

I
AP

C
I

AP
C

I
AP

C
I

AP
C

I
AP

C
I

AP
C

I
AP

C
I

AP
C

I
AP

C
I

1 1 1 1 0 1 1 1 0 0

Figure 35: A_READ_PHYSADDR_SERNO_REQ_PDU

The application process shall respond to the A_Read_Physaddr_Serno.ind primitive
with an A_Read_Physaddr_Serno.res primitive, if the serial number received is equal to
the serial number of the device.

Octet 11 Octet 12 Octed 13-19 Octed 20-21 Octed 22-23

Serialnumber 0-5 SystemID Reserved

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

AP
C

I
AP

C
I

AP
C

I
AP

C
I

AP
C

I
AP

C
I

AP
C

I
AP

C
I

AP
C

I
AP

C
I

1 1 1 1 0 1 1 1 0 1 0

Figure 36: A_READ_PHYSADDR_SERNO_RES_PDU

The remote layer-7 accepts the service response and passes it with a T_Broadcast.req to
the layer-4, the tsdu is a A_READ_PHYSADDR_SERNO_RES_PDU. The layer-7 is
mapping a T_Broadcast.ind primitive with tsdu =
A_READ_PHYSADDR_SERNO_RES_PDU to an A_Read_Physaddr_Serno.con
primitive. The argument class is mapped to the corresponding argument class of the
A_Read_Physaddr_Serno.con primitive.
A_Read_Physaddr_Serno.req(class, serial_number)
class: system, alarm, high or low priority
serial_number: the serial number

A_Read_Physaddr_Serno.ind(class, serial_number)
class: system, alarm, high or low priority
serial_number: the serial number

Page 49
prEN ### 1997

A_Read_Physaddr_Serno.con(class, serial_number,a_Status)
class: system, alarm, high or low priority
serial_number: the serial number
a_status: OK; A_Read_Physaddr_Serno sent successfully with

T_Broadcast service
 not_ok; transmission of the associated T_Broadcast

request frame didn’t succeed

A_Read_Physaddr_Serno.res(class, physical_address)
class: system, alarm, high or low priority
physical_address: the value of the physical address

14.4 A_Set_Physaddr_Serno Service

The A_Set_Physaddr_Serno.req primitive is applied by the user of layer-7, to modify
the physical address in a communication partner. The communication partner is
identified using the unique serial number (6 octets) of the device.

The local layer-7 accepts the service request and passes it with a T_Broadcast.req to the
local layer-4. The parameter class is mapped to the corresponding parameter of the
T_Broadcast.req primitive, the tsdu is an A_SET_PHYSADDR_SERNO_REQ_PDU.

Octet 11 Octet 12 Octed 13-19 Octed 20-21 Octed 22-23 Octed 24-25

Serialnumber 0-5 new address System ID Reserved

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

AP
C

I
AP

C
I

AP
C

I
AP

C
I

AP
C

I
AP

C
I

AP
C

I
AP

C
I

AP
C

I
AP

C
I

1 1 1 1 0 1 1 1 0 1 0

Figure 37: A_SET_PHYSADDR_SERNO_REQ_PDU

The remote layer-7 is mapping a T_Broadcast.ind primitive with tsdu=
A_SET_PHYSADDR_SERNO_REQ_PDU to an A_Set_Physaddr_Serno.ind primitive.
The argument class is mapped to the corresponding argument class of the
A_Set_Physaddr_Serno.ind primitive.

The application process shall respond to the A_Set_Physaddr_Serno.ind primitive with
an A_Set_Physaddr_Serno.res primitive, if the serial number received is equal to the
serial number of the device.
A_Set_Physaddr_Serno.req(class, serial_number, newaddress, newSystemID)
class: system, alarm, high or low priority
serial_number: the serial number
newaddress: the new value of the physical address
newSystemID the new value of the systemID

A_Set_Physaddr_Serno.ind(class, serial_number, newaddress, newSystemID)
class: system, alarm, high or low priority
serial_number: the serial number
newaddress: the new value of the physical address
newSystemID the new value of the systemID

A_Set_Physaddr_Serno.con(class, serial_number, newaddress, newSystemID,
a_status)

class: system, alarm, high or low priority
serial_number: the serial number
newaddress: the new value of the physical address
newSystemID the new value of the systemID
a_status: OK; A_Set_Physaddr_Serno sent successfully with

T_Broadcast service
 not_ok; transmission of the associated T_Broadcast

request frame didn’t succeed

Page 50
prEN ### 1997

Prior to passing a A_Set_Physaddr_Serno.con primitive to the local application process,
the local layer-7 needs a T_Broadcast.con from the local layer-4. If the confirmation is
positive (t_status = OK), the local layer-7 passes a positive Set_Physaddr.con(a_status =
OK) to the local application process. If the confirmation is negative (t_status = not_ok),
the local layer-7 passes a A_Set_Physaddr_Serno.con (a_status = not_ok) to the local
user indicating that the transmission of the associated T_Broadcast.req didn’t succeed.

14.5 A_Service_Information Service

The A_Service_Information.req primitive is applied by the user of layer-7, to inform
communication partners about the status of the user application (running/stopped),
duplicate physical address and verify mode.

The local layer-7 accepts the service request and passes it with a T_Broadcast.req to the
local layer-4. The parameter class is mapped to the corresponding parameter of the
T_Broadcast.req primitive, the tsdu is an A_SERVICE_INFORMATION_REQ_PDU.

Octet 6 Octet 7 Octet 8 Octet 9 Octet 10

Info

8 7 6 5 4 3 2 1 8 7 6 5 4 3 2 1 8 7 6 5 4 3 2 1 8 7 6 5 4 3 2 1 8 7 6 5 4 3 2 1

AP
C

I
AP

C
I

AP
C

I
AP

C
I

AP
C

I
AP

C
I

AP
C

I
AP

C
I

AP
C

I
AP

C
I

re
se

rv
ed

re
se

rv
ed

re
se

rv
ed

re
se

rv
ed

re
se

rv
ed

ve
rif

y
m

od
e

ac
tiv

e
(1

)
du

pl
ic

at
e

ph
ys

. a
dd

r (
1)

ap
pl

ic
at

io
n

st
op

pe
d(

1)
re

se
rv

ed
re

se
rv

ed
re

se
rv

ed
re

se
rv

ed
re

se
rv

ed
re

se
rv

ed
re

se
rv

ed
re

se
rv

ed
re

se
rv

ed
re

se
rv

ed
re

se
rv

ed
re

se
rv

ed
re

se
rv

ed
re

se
rv

ed
re

se
rv

ed
re

se
rv

ed

1 1 1 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 38: A_SERVICE_INFORMATION_REQ_PDU

The remote layer-7 is mapping a T_Broadcast.ind primitive with tsdu=
A_SERVICE_INFORMATION_REQ_PDU to an A_Service_Information.ind primitive.
The argument class is mapped to the corresponding argument class of the
A_Service_Information.ind primitive.
A_Service_Information.req(class, info)
class: system, alarm, high or low priority
info: service information

A_Service_Information.ind(class, info)
class: system, alarm, high or low priority
info: service information

A_Service_Information.con(class, info, a_status)
class: system, alarm, high or low priority
info: service information
a_status: OK; A_Service_Information sent successfully with

T_Broadcast service
 not_ok; transmission of the associated T_Broadcast

request frame didn’t succeed

Prior to passing a A_Service_Information.con primitive to the local application process,
the local layer-7 needs a T_Broadcast.con from the local layer-4. If the confirmation is
positive (t_status = OK), the local layer-7 passes a positive Set_Physaddr.con(a_status =
OK) to the local application process. If the confirmation is negative (t_status = not_ok),
the local layer-7 passes a A_Service_Information.con (a_status = not_ok) to the local
user indicating that the transmission of the associated T_Broadcast.req didn’t succeed.

Page 51
prEN ### 1997

14.6 A_Set_SystemID Service

The A_Set_SystemID.req primitive is applied by the user of layer-7, to modify the
system ID in a communication partner. The communication partner is not identified in
the service, i.e. the destination must be defined by selecting a destination manually. This
can be done by pressing a button on exactly one device that brings this device into a
´programming´ mode, i.e. only the device where the button is pressed will accept the
A_Set_SystemID.ind, others will ignore it. The way that a product is set to
´programming´ mode may be manufacturer specific.

The local layer-7 accepts the service request and passes it with a T_Broadcast.req to the
local layer-4. The parameter class is mapped to the corresponding parameter of the
T_Broadcast.req primitive, the tsdu is an A_SET_SYSTEM_ID_REQ_PDU.

Octet 11 Octet 12 Octet 13 Octet 14

System ID High System ID Low

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

AP
C

I
AP

C
I

AP
C

I
AP

C
I

AP
C

I
AP

C
I

AP
C

I
AP

C
I

AP
C

I
AP

C
I

1 1 1 1 1 0 0 0 0 0

Figure 39: A_SET_SYSTEM_ID_REQ_PDU

The remote layer-7 is mapping a T_Broadcast.ind primitive with tsdu=
A_SET_SYSTEM_ID_REQ_PDU to an A_Set_SystemID.ind primitive. The argument
class and newSystemID is mapped to the corresponding argument of the
A_Set_SystemID.ind primitive.

The application process shall ignore the A_Set_SystemID.ind primitive if the device is
not in ´programming´ mode.
A_Set_SystemID.req(class, newSystemID)
class: system, alarm, high or low priority
newSystemID: the new value of the System ID

A_Set_SystemID.ind(class, newSystemID)
class: system, alarm, high or low priority
newSystemID: the new value of the System ID

A_Set_SystemID.con(class, newSystemID, a_status)
class: system, alarm, high or low priority
newSystemID: the new value of the System ID
a_status: OK; A_Set_SystemID sent successfully with

T_Broadcast service
 not_ok; transmission of the associated T_Broadcast

request frame didn’t succeed

Prior to passing a A_Set_Physaddr.con primitive to the local application process, the
local layer-7 needs a T_Broadcast.con from the local layer-4. If the confirmation is
positive (t_status = OK), the local layer-7 passes a positive
A_Set_SystemID.con(a_status = OK) to the local application process. If the
confirmation is negative (t_status = not_ok), the local layer-7 passes a
A_Set_SystemID.con (a_status = not_ok) to the local user indicating that the
transmission of the associated T_Broadcast.req didn’t succeed.

14.7 A_Read_SystemID Service

The A_Read_SystemID.req primitive is applied by the user of layer-7, to read the
SystemID from a communication partner. The communication partner is not identified
in the service, i.e. the destination must be defined by selecting a destination manually.

Page 52
prEN ### 1997

This can be done by pressing a button on one or more device that brings these device
into a ´programming´ mode, i.e. only a device where the button is pressed will accept
the A_Read_SystemID.ind, others will ignore it. The way that a product is set to
´programming´ mode may be manufacturer specific.

The local layer-7 accepts the service request and passes it with a T_Broadcast.req to the
local layer-4. The parameter class is mapped to the corresponding parameter of the
T_Broadcast.req primitive, the tsdu is an A_READ_SYSTEM_ID_REQ_PDU.

The remote layer-7 is mapping a T_Broadcast.ind primitive with tsdu=
A_READ_SYSTEM_ID_REQ_PDU to an A_Read_SystemID.ind primitive. The
argument class is mapped to the corresponding argument class of the
A_Read_SystemID.ind primitive.

The application process shall respond to the A_Read_SystemID.ind primitive with an
A_Read_SystemID.res primitive only if the device is in ´programming´ mode.

Octet 11 Octet 12

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

AP
C

I
AP

C
I

AP
C

I
AP

C
I

AP
C

I
AP

C
I

AP
C

I
AP

C
I

AP
C

I
AP

C
I

1 1 1 1 1 1 0 0 0 1

Figure 40: A_READ_SYSTEM_ID_REQ_PDU

Octet 11 Octet 12 Octed 13-14

SystemID

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

AP
C

I
AP

C
I

AP
C

I
AP

C
I

AP
C

I
AP

C
I

AP
C

I
AP

C
I

AP
C

I
AP

C
I

1 1 1 1 1 0 0 0 1 0

Figure 41: A_READ_SYSTEM_ID_RES_PDU

The remote layer-7 accepts the service response and passes it with a T_Broadcast.req to
the layer-4, the tsdu is a A_READ_SYSTEM_ID_RES_PDU. The layer-7 is mapping a
T_Broadcast.ind primitive with tsdu= A_READ_SYSTEM_ID_RES_PDU to an
A_Read_SystemID.con primitive. The argument class is mapped to the corresponding
argument class of the A_Read_SystemID.con primitive.
A_Read_SystemID.req(class)
class: system, alarm, high or low priority

A_Read_SystemID.ind(class)
class: system, alarm, high or low priority

A_Read_SystemID.con(class, a_status)
class: system, alarm, high or low priority
a_status: OK; A_Read_SystemID.conf sent successfully with

T_Broadcast service
 not_ok; transmission of the associated T_Broadcast

request frame didn’t succeed

A_Read_SystemID.res(class,SystemID)
class: system, alarm, high or low priority
SystemID: the value of the SystemID

14.8 A_Read_SystemID_Selective_Request Service

Reserverd APCI for other Mediums.

Page 53
prEN ### 1997

15 Layer-7 Services on one-to-one connection-less Communication Relationships

A one-to-one connection-less communication relationship connects one EIB end device
with another EIB end device. The following services can be applied on one-to-one
connection-less communication relationships as well as on one-to-one connection-
oriented communication relationships. The following paragraphs describe the mapping
of the services on one-to-one connection-less communication relationships. For
connection-oriented communication relationships the T_Data service of layer-4 is
applied instead of the T_Data_Unack service and the Physical Address and MAC-
Address are replaced with the cr_id.

15.1 A_Read_Property_Value Service

The A_Read_Property_Value.req primitive is applied by the user of layer-7, to read the
value of a property of an object. The communication partner is addressed in
communication oriented mode with a local cr_id, that is mapped to a physical address
by layer-4 or directly with the physical_address/MAC-address. The object of the partner
is addressed with an object_id and the property of the object is addressed with a
property_id. The no_of_elem and start_index indicate the number of array elements
starting with the given start_index in the property value that the user wants to read. The
user of layer-7 in the partner device shall respond with an A_Read_Property_Value.res,
i.e. the service is confirmed by the remote application process.

The local layer-7 accepts the service request and passes it with a T_Data_Unack.req to
the local layer-4. The parameters physical address / MAC-address and class are mapped
to the corresponding parameters of the T_Data_Unack.req primitive, the tsdu is an
A_READ_PROPERTY_VALUE_PDU.

The remote layer-7 is mapping a T_Data_Unack.ind primitive with tsdu=
A_READ_PROPERTY_VALUE_PDU to an A_Read_Property_Value.ind primitive.
The arguments physical_address/MAC-address and class are mapped to the
corresponding arguments of the A_Read_Property_Value.ind primitive.

The application process shall respond to the A_Read_Property_Value.ind primitive with
an A_Read_Property_Value.res primitive containing the requested number of elements
of the property value of the property of the associated object. If the remote application
process has a problem, e.g. object or property doesn’t exist or the data does not fit in a
PDU or the requester has not the required access rights, then the no_of_elem of the
A_READ_PROPERTY_VALUE_RES_PDU shall be zero and shall contain no data.

Octet 11 Octet 12 Octet 13 Octet 14 Octet 15 Octet 16

object_id property_id no_of_elem. start_index

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

AP
C

I
AP

C
I

AP
C

I
AP

C
I

AP
C

I
AP

C
I

AP
C

I
AP

C
I

AP
C

I
AP

C
I

1 1 1 1 0 1 0 1 0 1

Figure 42: A_READ_PROPERTY_VALUE_REQ_PDU

Page 54
prEN ### 1997

Octet 11 Octet 12 Octet 13 Octet 14 Octet 15 Octet 16 Octet 17 - Octet N

object_id property_id no_of_elem. start_index data

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

AP
C

I
AP

C
I

AP
C

I
AP

C
I

AP
C

I
AP

C
I

AP
C

I
AP

C
I

AP
C

I
AP

C
I

1 1 1 1 0 1 0 1 1 0

Figure 43: A_READ_PROPERTY_VALUE_RES_PDU

The remote layer-7 accepts the service response and passes it with a T_Data_Unack.req
to the local layer-4. The parameters physical_address/MAC-address and class are
mapped to the corresponding parameters of the T_Data_Unack.req primitive, the tsdu is
a A_READ_PROPERTY_RES_PDU.

The layer-7 is mapping a T_Data_Unack.ind primitive with tsdu=
A_READ_PROPERTY_RES_PDU to an A_Read_Property_Value.con primitive. The
arguments physical_address/MAC-address and class are mapped to the corresponding
arguments of the A_Read_Property_Value.con primitive.
A_Read_Property_Value.req(MAC-address,physical-address, class, object_id,

property_id, no_of_elem, start_index)
MAC-address Destination address of MAC-Layer
Physical_address: Destination physical address of the EIB End

Device.
class: System, alarm, high or low priority
object_id: the object_id of the object of the

communication partner.
property_id: The property_id of the property of the

object.
no_of_elem: The number of array elements to be read in

the property value.
start_index: The array index of the first array element

to be read.

A_Read_Property_Value.ind(MAC-address,physical-address, class, object_id,
property_id, no_of_elem, start_index)

MAC-Address Source Address of MAC-Layer.
Physical_address: Source Physical address of the EIB End

Device.
class: System, alarm, high or low priority.
object_id: The object_id of the object addressed.
property_id: The property_id of the property of the

object addressed.
no_of_elem: The number of array elements to be read in

the property value.
start_index: The array index of the first array element

to be read.

A_Read_Property_Value.con(MAC-address,physical-address, class, object_id,
property_id, no_of_elem, start_index,
a_status)

MAC-Address Source Address of MAC-Layer.
Physical_address: Source Physical address of the EIB End

Device.
class: System, alarm, high or low priority.
object_id: The object_id of the object addressed.
property_id: The property_id of the property of the

object addressed.
no_of_elem: The number of array elements to be read in

the property value or zero if problem
occurred.

start_index: The array index of the first array element
to be read.

a_status: OK; the service sent successfully
 not OK; the transmission of the service didn’t

succeed

Page 55
prEN ### 1997

A_Read_Property_Value.res(MAC-address,physical-address, class, object_id,
property_id, no_of_elem, start_index, data)

MAC-Address Destination Address of MAC-Layer
Physical_address: Destination Physical address of the EIB End

Device.
class: System, alarm, high or low priority.
object_id: The object_id of the object addressed.
property_id: The property_id of the property of the

object addressed.
no_of_elem: The number of array elements to be read in

the property value or zero if problem
occurred.

start_index: The array index of the first array element
to be read

data: The value of the array elements read, or no
data, if a problem occurred.

15.2 A_Write_Property_Value Service

The A_Write_Property_Value.req primitive is applied by the user of layer-7, to modify
the value of a property of an object. The communication partner is addressed in
connection oriented mode with a local cr_id that is mapped to a physical address by
layer-4 or in connection less mode with physical_address/MAC-address. The object of
the partner is addressed with an object_id and the property of the object is addressed
with a property_id. The no_of_elem and start_index indicate the number of array
elements starting with the given start_index in the property value that the user wants to
write to.

The local layer-7 accepts the service request and passes it with a T_Data_Unack.req to
the local layer-4. The parameters physical_address/MAC-address and class are mapped
to the corresponding parameters of the T_Data_Unack.req primitive, the tsdu is an
A_WRITE_PROPERTY_VALUE_REQ_PDU.

The remote layer-7 is mapping a T_Data_Unack.ind primitive with tsdu=
A_WRITE_PROPERTY_VALUE_REQ_PDU to an A_Write_Property_Value.ind
primitive. The arguments physical_address/MAC-address and class are mapped to the
corresponding arguments of the A_Write_Property_Value.ind primitive.

Octet 11 Octet 12 Octet 13 Octet 14 Octet 15 Octet 16 Octet 17 - Octet N

object_id property_id no_of_elem. start_index data

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

AP
C

I
AP

C
I

AP
C

I
AP

C
I

AP
C

I
AP

C
I

AP
C

I
AP

C
I

AP
C

I
AP

C
I

1 1 1 1 0 1 0 1 1 1

Figure 44: A_WRITE_PROPERTY_VALUE_REQ_PDU

The application process shall respond to the A_Write_Property_Value.ind primitive
with an A_Read_Property_Value.res primitive containing the requested number of
elements of the property value of the property of the associated object. The value of the
property of the associated object shall be explicitly read back after writing to it. If the
remote application process has a problem, e.g. object or property doesn’t exist or the
requester has not the required access rights, then the no_of_elem of the
A_READ_PROPERTY_VALUE_RES_PDU shall be zero and shall contain no data.

The remote layer-7 accepts the service response and passes it with a T_Data_Unack.req
to the local layer-4. The parameters physical_address/MAC-address and class are
mapped to the corresponding parameters of the T_Data_Unack.req primitive, the tsdu is
an A_READ_PROPERTY_VALUE_RES_PDU.

Page 56
prEN ### 1997

The layer-7 is mapping a T_Data_Unack.ind primitive with tsdu=
A_READ_PROPERTY_VALUE_RES_PDU to an A_Write_Property_Value.res
primitive if a A_WRITE_PROPERTY_VALUE_REQ_PDU has been sent before to this
communication partner to this object and property. The arguments MAC-address,
physical address and class are mapped to the corresponding arguments of the
A_Read_Property_Value.res primitive.
A_Write_Property_Value.req(MAC-address,physical-address, class, object_id,

property_id, no_of_elem, start_index, data)
MAC-Address Destination Address of MAC-Layer.
Physical_address: Destination Physical address of the EIB End

Device.
class: System, alarm, high or low priority.
object_id: The object_id of the object addressed.
property_id: The property_id of the property of the

object addressed.
no_of_elem: The number of array elements to be written

in the property value.
start_index: The array index of the first array element

to be written.
data: The data to write to the array elements.

A_Write_Property_Value.ind(MAC-address,physical-address, class, object_id,
property_id, no_of_elem, start_index, data)

MAC-Address Source Address of MAC-Layer.
Physical_address: Source Physical address of the EIB End

Device.
class: System, alarm, high or low priority.
object_id: The object_id of the object addressed.
property_id: The property_id of the property of the

object addressed.
no_of_elem: The number of array elements to be written

in the property value.
start_index: The array index of the first array element

to be written.
data: The data to write to the array elements.

A_Write_Property_Value.con(MAC-address,physical-address, class, object_id,
property_id, no_of_elem, start_index, data,
a_status)

MAC-Address Source Address of MAC-Layer.
Physical_address: Source Physical address of the EIB End

Device.
class: System, alarm, high or low priority.
object_id: The object_id of the object addressed.
property_id: The property_id of the property of the

object addressed.
no_of_elem: The number of array elements written in the

property value or zero if problem occurred.
start_index: The array index of the first array element

written.
data: The value of the array elements written, or

no data, if a problem occurred.
a_status: OK; the service sent successfully
 not OK; the transmission of the service didn’t

succeed

15.3 A_FileRead_Property Service

The A_FileRead_Property.req primitive is applied by the user of layer-7, to read the
value of a property of an object. The communication partner is addressed with a
physical address and MAC-address. The object of the partner is addressed with an
object_id and the property of the object is addressed with a property_id. The
no_of_elements and start_index indicate the number of array elements starting with the
given start_index in the property value that the user wants to read. The user of layer-7 in
the partner device shall respond with one ore more A_FileRead_Property.res, i.e. the
service is confirmed by the remote application process. If the no_of_elements parameter
of the A_FileRead_Property.req primitive is set to zero the whole property is read.

Page 57
prEN ### 1997

The local layer-7 accepts the service request and passes it with a T_Data_Unack.req to
the local layer-4. The parameters physical address, MAC-address and class are mapped
to the corresponding parameters of the T_Data_Unack.req primitive, the tsdu is an
A_FILE_READ_PROPERTY_PDU.

The remote layer-7 is mapping a T_Data_Unack.ind primitive with tsdu=
A_FILE_READ_PROPERTY_PDU to an A_FileRead_Property.ind primitive. The
arguments physical address, MAC-address and class are mapped to the corresponding
arguments of the A_FileRead_Property.ind primitive.

The application process shall respond to the A_FileRead_Property.ind primitive with at
least one A_FileRead_Property.res primitive containing the requested number of
elements of the property value of the property of the associated object. If the remote
application process has a problem, e.g. object or property doesn’t exist or the requester
has not the required access rights, then the no_of_elements of the
A_FILE_READ_PROPERTY_RES_PDU shall be zero and contain no data. If the data
does not fit in one PDU e.g. no_of_elements is set to zero for read of whole property the
application process respond with more than one A_FileRead_Property.res primitives.

Octet 11 Octet 12 Octet 13 Octet 14 Octet 15 Octet 16
object_id property_id no_of_elements

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

AP
C

I
AP

C
I

AP
C

I
AP

C
I

AP
C

I
AP

C
I

AP
C

I
AP

C
I

AP
C

I
AP

C
I

AP
C

I
AP

C
I

AP
C

I
AP

C
I

AP
C

I
AP

C
I

AP
C

I
AP

C
I

1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

Octet 17 Octet 18 Octet 19 Octet 20
start_index

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Figure 45: A_FILE_READ_PROPERTY_REQ_PDU

Octet 11 Octet 12 Octet 13 Octet 14 Octet 15 Octet 16
object_id property_id no_of_elements

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

AP
C

I
AP

C
I

AP
C

I
AP

C
I

AP
C

I
AP

C
I

AP
C

I
AP

C
I

AP
C

I
AP

C
I

AP
C

I
AP

C
I

AP
C

I
AP

C
I

AP
C

I
AP

C
I

AP
C

I
AP

C
I

1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1

Octet 17 Octet 18 Octet 19 Octet 20 Octet 21-N
start_index Data

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Figure 46: A_FILE_READ_PROPERTY_RES_PDU

The remote layer-7 accepts the service response and passes it with a T_Data_Unack.req
to the local layer-4. The parameters physical address, MAC-address and class are

Page 58
prEN ### 1997

mapped to the corresponding parameters of the T_Data_Unack.req primitive, the tsdu is
a A_FILE_READ_PROPERTY_RES_PDU.

The layer-7 is mapping a T_Data_Unack.ind primitive with tsdu=
A_FILE_READ_PROPERTY_RES_PDU to an A_Read_Property.con primitive. The
arguments physical address, MAC-address and class are mapped to the corresponding
arguments of the A_FileRead_Property.con primitive.
A_FileRead_Property.req(MAC-address, physical-address, class, object_id,

property_id, no_of_elements, start_index)
MAC-address Destination address of MAC-Layer
physical_address: Destination physical address of the EIB End

Device.
class: System, alarm, high or low priority
object_id: the object_id of the object of the

communication partner.
property_id: The property_id of the property of the

object.
no_of_elements: The number of array elements to be read in

the property value.
start_index: The array index of the first array element

to be read.

A_FileRead_Property.ind(MAC-address, physical-address, class, object_id,
property_id, no_of_elements, start_index)

MAC-address Source address of MAC-Layer.
physical_address: Source physical address of the EIB End

Device.
class: System, alarm, high or low priority.
object_id: The object_id of the object addressed.
property_id: The property_id of the property of the

object addressed.
no_of_elements: The number of array elements to be read in

the property value.
start_index: The array index of the first array element

to be read.

A_FileRead_Property.con(MAC-address, physical-address, class, object_id,
property_id, no_of_elements, start_index,
a_status)

MAC-address Source address of MAC-Layer.
physical_address: Source physical address of the EIB End

Device.
class: System, alarm, high or low priority.
object_id: The object_id of the object addressed.
property_id: The property_id of the property of the

object addressed.
no_of_elements: The number of array elements to be read in

the property value or zero if problem
occurred.

start_index: The array index of the first array element
to be read.

a_status: OK; the service sent successfully
 not OK; the transmission of the service didn’t

succeed

Page 59
prEN ### 1997

A_FileRead_Property.res(MAC-address, physical-address, class, object_id,
property_id, no_of_elements, start_index,
data)

MAC-address Destination address of MAC-Layer
physical_address: Destination physical address of the EIB End

Device.
class: System, alarm, high or low priority.
object_id: The object_id of the object addressed.
property_id: The property_id of the property of the

object addressed.
no_of_elements: The number of array elements to be read in

the property value or zero if problem
occurred.

start_index: The array index of the first array element
to be read

data: The value of the array elements read, or no
data, if a problem occurred.

15.4 A_FileWrite_Property Service

The A_FileWrite_Property.req primitive is applied by the user of layer-7, to modify the
value of a property of an object. The communication partner is addressed with a
physical address and MAC-address. The object of the partner is addressed with an
object_id and the property of the object is addressed with a property_id. The
no_of_elements and start_index indicate the number of array elements starting with the
given start_index in the property value that the user wants to write to. If the start_index
set to 0xffffffffh the elements are append to the end of the array.

The local layer-7 accepts the service request and passes it with a T_Data_Unack.req to
the local layer-4. The parameters physical address, MAC-address and class are mapped
to the corresponding parameters of the T_Data_Unack.req primitive, the tsdu is an
A_FILE_WRITE_PROPERTY_REQ_PDU.

The remote layer-7 is mapping a T_Data_Unack.ind primitive with tsdu=
A_FILE_WRITE_PROPERTY_REQ_PDU to an A_FileWrite_Property.ind primitive.
The arguments physical address, MAC-address and class are mapped to the
corresponding arguments of the A_FileWrite_Property.ind primitive.

Octet 11 Octet 12 Octet 13 Octet 14 Octet 15 Octet 16
object_id property_id no_of_elements

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

AP
C

I
AP

C
I

AP
C

I
AP

C
I

AP
C

I
AP

C
I

AP
C

I
AP

C
I

AP
C

I
AP

C
I

AP
C

I
AP

C
I

AP
C

I
AP

C
I

AP
C

I
AP

C
I

AP
C

I
AP

C
I

1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 0

Octet 17 Octet 18 Octet 19 Octet 20 Octet 21-N
start_index Data

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Figure 47: A_FILE_WRITE_PROPERTY_REQ_PDU

Page 60
prEN ### 1997

Octet 11 Octet 12 Octet 13 Octet 14 Octet 15 Octet 16
object_id property_id no_of_elements

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

AP
C

I
AP

C
I

AP
C

I
AP

C
I

AP
C

I
AP

C
I

AP
C

I
AP

C
I

AP
C

I
AP

C
I

AP
C

I
AP

C
I

AP
C

I
AP

C
I

AP
C

I
AP

C
I

AP
C

I
AP

C
I

1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1

Octet 17 Octet 18 Octet 19 Octet 20
start_index

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Figure 48: A_FILE_WRITE_PROPERTY_RES_PDU

The application process shall respond to the A_FileWrite_Property.ind primitive with an
A_FileWrite_Property.res primitive containing the requested number of elements and
the start_index of the request. If the remote application process has a problem, e.g.
object or property doesn’t exist or the requester has not the required access rights, then
the no_of_elements of the A_FILE_WRITE_PROPERTY_RES_PDU shall be zero and
shall contain no data.

The remote layer-7 accepts the service response and passes it with a T_Data_Unack.req
to the local layer-4. The parameters physical address, MAC-address and class are
mapped to the corresponding parameters of the T_Data_Unack.req primitive, the tsdu is
an A_FILE_WRITE_PROPERTY_RES_PDU.

The layer-7 is mapping a T_Data_Unack.ind primitive with tsdu=
A_FILE_WRITE_PROPERTY_RES_PDU to an A_Write_Property_Value.con
primitive if a A_FLIE_WRITE_PROPERTY_REQ_PDU has been sent before to this
communication partner to this object and property. The arguments physical address,
MAC-address and class are mapped to the corresponding arguments of the
A_FileWrite_Property.con primitive.
A_FileWrite_Property.req(MAC-address, physical-address, class, object_id,

property_id, no_of_elements, start_index,
data)

MAC-address Destination address of MAC-Layer.
physical_address: Destination physical address of the EIB End

Device.
class: System, alarm, high or low priority.
object_id: The object_id of the object addressed.
property_id: The property_id of the property of the

object addressed.
no_of_elements: The number of array elements to be written

in the property value.
start_index: The array index of the first array element

to be written.
data: The data to write to the array elements.

Page 61
prEN ### 1997

A_FileWrite_Property.ind(MAC-address, physical-address, class, object_id,
property_id, no_of_elements, start_index,
data)

MAC-address Source address of MAC-Layer.
physical_address: Source physical address of the EIB End

Device.
class: System, alarm, high or low priority.
object_id: The object_id of the object addressed.
property_id: The property_id of the property of the

object addressed.
no_of_elements: The number of array elements to be written

in the property value.
start_index: The array index of the first array element

to be written.
data: The data to write to the array elements.

A_FileWrite_Property.con(MAC-address, physical-address, class, object_id,
property_id, no_of_elements, start_index,
data, a_status)

MAC-address Source address of MAC-Layer.
physical_address: Source physical address of the EIB End

Device.
class: System, alarm, high or low priority.
object_id: The object_id of the object addressed.
property_id: The property_id of the property of the

object addressed.
no_of_elements: The number of array elements written in the

property value or zero if problem occurred.
start_index: The array index of the first array element

written.
data: The value of the array elements written, or

no data, if a problem occurred.
a_status: OK; the service sent successfully
 not OK; the transmission of the service didn’t

succeed

A_FileWrite_Property.res(MAC-address, physical-address, class, object_id,
property_id, no_of_elements, start_index,
data)

MAC-address Destination address of MAC-Layer.
physical_address: Destination physical address of the EIB End

Device.
class: System, alarm, high or low priority
object_id: The object_id of the object addressed
property_id: The property_id of the property of the

object addressed.
no_of_elements: The number of array elements written in the

property value or zero if problem occurred.
start_index: The array index of the first array element

written.
data: The value of the array elements written, or

no data, if a problem occurred.

15.5 A_Read_Property_Description Service

The A_Read_Property_Description.req primitive is applied by the user of layer-7, to
read the description of the property of an object. The communication partner is
addressed in connection oriented mode with a local cr_id that is mapped to a physical
address by layer-4 or in connetion less mode with physical_address/MAC-address. The
object of the partner is addressed with an object_id and the property of the object is
addressed with a property_id or with a property_index. The property_index is used only
if the property_id is zero. The property_index, if evaluated, is addressing the property of
the object with a sequential number, i.e. property_index = 0 means first property of the
associated object, property_index = 1 means second property. The service is confirmed
by the remote application process.

The local layer-7 accepts the service request and passes it with a T_Data_Unack.req to
the local layer-4. The parameters physical_address/MAC-address and class are mapped

Page 62
prEN ### 1997

to the corresponding parameters of the T_Data_Unack.req primitive, the tsdu is an
A_READ_PROPERTY_DESCRIPTION_REQ_PDU.

The remote layer-7 is mapping a T_Data_Unack.ind primitive with tsdu=
A_READ_PROPERTY_DESCRIPTION_REQ_PDU to an
A_Read_Property_Description.ind primitive. The arguments physical_address/MAC-
address and class are mapped to the corresponding arguments of the
A_Read_Property_Description.ind primitive.

The application process shall respond to the A_Read_Property_Description.ind
primitive with an A_Read_Property_Description.res primitive containing the description
of the property of the associated property of the object addressed.

If the property_id in the A_READ_PROPERTY_DESCRIPTION_REQ_PDU is zero,
the remote application process shall use the indicated property_index to access the
property description, otherwise the property_id shall be used. If the remote application
process has a problem, e.g. object or property doesn’t exist, then the max_no_of_elem
of the A_READ_PROPERTY_DESCRIPTION_RES_PDU shall be zero.

The service shall not be confirmed negative for authorization reasons.

Octet 11 Octet 12 Octet 13 Octet 14 Octet 15

object_id property_id property_index

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

AP
C

I
AP

C
I

AP
C

I
AP

C
I

AP
C

I
AP

C
I

AP
C

I
AP

C
I

AP
C

I
AP

C
I

1 1 1 1 0 1 1 0 0 0

Figure 49: A_READ_PROPERTY_DESCRIPTION_REQ_PDU

O c tet 11 O c tet 12 O c tet 13 O c tet 14 O c tet 15
object_id property_id property_index

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

AP
C

I
AP

C
I

AP
C

I
AP

C
I

AP
C

I
AP

C
I

AP
C

I
AP

C
I

AP
C

I
AP

C
I

1 1 1 1 0 1 1 0 0 1

O c tet 16 O c tet 17 O c tet 18 O c tet 18
type exp max_no_of_e lem access

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
read_level wri te_level

Figure 50: A_READ_PROPERTY_DESCRIPTION_RES_PDU

The remote layer-7 accepts the service response and passes it with a T_Data_Unack.req
to the local layer-4. The parameters physical_address/MAC-address and class are
mapped to the corresponding parameters of the T_Data_Unack.req primitive, the tsdu is
a A_READ_PROPERTY_DESCRIPTION_RES_PDU.

The layer-7 is mapping a T_Data_Unack.ind primitive with tsdu=
A_READ_PROPERTY_DESCRIPTION_RES_PDU to an
A_Read_Property_Description.con primitive. The arguments physical_address/MAC-
address and class are mapped to the corresponding arguments of the
A_Read_Property_Description.con primitive.

Page 63
prEN ### 1997

A_Read_Property_Description.req(MAC-address,physical-address, class,
object_id, property_id, property_index)

MAC-Address Destination Address of MAC-Layer
Physical_address: Destination Physical address of the EIB End

Device.
class: System, alarm, high or low priority.
object_id: The object_id of the object of the

communication partner.
property_id: The property_id of the property of the

object.
property_index: Sequential property number.

A_Read_Property_Description.ind(MAC-address,physical-address, class,
object_id, property_id, index)

MAC-Address Source Address of MAC-Layer.
Physical_address: Source Physical address of the EIB End

Device.
class: System, alarm, high or low priority
object_id: the object_id of the object of the

communication partner
property_id: The property_id of the property of the

object
property_index: Sequential property number

A_Read_Property_Description.con(MAC-address,physical-address, class,
object_id, property_id, index, a_status)

MAC-Address Source Address of MAC-Layer.
Physical_address: Source Physical address of the EIB End

Device.
class: System, alarm, high or low priority.
object_id: The object_id of the object of the

communication partner.
property_id: The property_id of the property of the

object.
property_index: Sequential property number.
a_status: OK; the service sent successfully
 not OK; the transmission of the service didn’t

succeed

A_Read_Property_Description.res(MAC-address,physical-address, class,
object_id, property_id, index, type,
max_no_of_elem, access)

MAC-Address Destination Address of MAC-Layer.
Physical_address: Destination Physical address of the EIB End

Device.
class: System, alarm, high or low priority.
object_id: The object_id of the object of the

communication partner.
property_id: The property_id of the property of the

object.
property_index: Sequential property number.
max_no_of_elem: Maximum number of elements of the array or

zero to indicate a problem.
exponent 4-bit binary exponent for the

max_no_of_elem.
access: Access level to read or write to the

property value.

15.6 A_Uread_Memory Service (optional)

The A_Uread_Memory service is optional. The A_Uread_Memory.req primitive is
applied by the user of layer-7, to read between 1 and 11 octets in the address space of
the remote application controller. The parameter memory_address specifies the 16-bit
start address and number contains the number of octets to be read beginning with the
start address to increasing addresses. The service is confirmed by the remote application
process with the contents of the address space.

The local layer-7 accepts the service request and passes it with a T_Data.req to the local
layer-4. The parameters physical_address/MAC-address and class are mapped to the

Page 64
prEN ### 1997

corresponding parameters of the T_Data.req primitive, the tsdu is an
A_UREAD_MEMORY_REQ_PDU.

The remote layer-7 is mapping a T_Data.ind primitive with tsdu=
A_UREAD_MEMORY_REQ_PDU to an A_Uread_Memory.ind primitive. The
arguments physical_address/MAC-address and class are mapped to the corresponding
arguments of the A_Uread_Memory.ind primitive.

Octet 11 Octet 12 Octet 13 Octet 14 Octet 15

number address(hi) address(lo)

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

AP
C

I
AP

C
I

AP
C

I
AP

C
I

AP
C

I
AP

C
I

AP
C

I
AP

C
I

AP
C

I
AP

C
I

1 0 1 1 0 0 0 0 0 0

Figure 51: A_UREAD_MEMORY_REQ_PDU

The remote application process shall respond to the A_Uread_Memory.ind primitive
with an A_Uread_Memory.res primitive containing the number of octets read beginning
with the start address to increasing addresses. If the remote application process has a
problem, e.g. address space unreachable or protected or an illegal number of octets is
requested, then the parameter number of the A_UREAD_MEMORY_RES_PDU shall
be zero and shall contain no data.

Octet 11 Octet 12 Octet 13 Octet 14 Octet 15 Octet 16 - N

number address(hi) address(lo) data

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

AP
C

I
AP

C
I

AP
C

I
AP

C
I

AP
C

I
AP

C
I

AP
C

I
AP

C
I

AP
C

I
AP

C
I

1 0 1 1 0 0 0 0 0 1

N=10+number

Figure 52: A_UREAD_MEMORY_RES_PDU

The remote layer-7 accepts the service response and passes it with a T_Data.req to the
local layer-4. The parameters physical_address/MAC-address and class are mapped to
the corresponding parameters of the T_Data.req primitive, the tsdu is a
A_UREAD_MEMORY_RES_PDU.

The layer-7 is mapping a T_Data.ind primitive with tsdu=
A_UREAD_MEMORY_RES_PDU to an A_Uread_Memory.con primitive. The
arguments physical_address/MAC-address and class are mapped to the corresponding
arguments of the A_Uread_Memory.con primitive.
A_Uread_Memory.req(MAC-address,physical-address, class, number,

memory_address)
MAC-Address Destination Address of MAC-Layer.
Physical_address: Destination Physical address of the EIB End

Device.
class: System, alarm, high or low priority.
number: Number of octets to be read beginning with

the start address to increasing addresses.
memory_address: Specifies the 16-bit start address.

Page 65
prEN ### 1997

A_Uread_Memory.ind(MAC-address,physical-address, class, number,
memory_address)

MAC-Address Source Address of MAC-Layer.
Physical_address: Source Physical address of the EIB End

Device.
class: System, alarm, high or low priority.
number: Number of octets to be read beginning with

the start address to increasing addresses.
memory_address: Specifies the 16-bit start address.

A_Uread_Memory.con(MAC-address,physical-address, class, number,
memory_address, a_status)

MAC-Address Source Address of MAC-Layer.
Physical_address: Source Physical address of the EIB End

Device.
class: System, alarm, high or low priority
number: Number of octets read beginning with the

start address to increasing addresses, or
zero to indicate a problem

memory_address: Specifies the 16-bit start address
a_status: OK; the service sent successfully
 not OK; the transmission of the service didn’t

succeed

A_Uread_Memory.res(MAC-address,physical-address, class, number,
memory_address, data)

MAC-Address Destination Address of MAC-Layer.
Physical_address: Destination Physical address of the EIB End

Device.
class: System, alarm, high or low priority.
number: Number of octets read beginning with the

start address to increasing addresses, or
zero to indicate a problem.

memory_address: Specifies the 16-bit start address.
data: The octet(s) read.

15.7 A_Uwrite_Memory Service (optional)

The A_Uwrite_Memory service is optional. The A_Uwrite_Memory.req primitive is
applied by the user of layer-7, to write between 1 and 11 octets in the physical address
space of the remote application controller. The parameter memory_address specifies the
16-bit start address and number contains the number of octets to be written beginning
with the start address to increasing addresses. The service may be confirmed by the
remote application process.

The local layer-7 accepts the service request and passes it with a T_Data.req to the local
layer-4. The parameters physical_address/MAC-address and class are mapped to the
corresponding parameters of the T_Data.req primitive, the tsdu is an
A_UWRITE_MEMORY_REQ_PDU.

The remote layer-7 is mapping a T_Data.ind primitive with tsdu=
A_UWRITE_MEMORY_REQ_PDU to an A_Uwrite_Memory.ind primitive. The
arguments physical_address/MAC-address and class are mapped to the corresponding
arguments of the A_Uwrite_Memory.ind primitive.

Octet 11 Octet 12 Octet 13 Octet 14 Octet 15-N

number address(hi) address(lo) data

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

AP
C

I
AP

C
I

AP
C

I
AP

C
I

1 0 1 0 0 0

N=9+number

Figure 53: A_UWRITE_MEMORY_REQ_PDU

Page 66
prEN ### 1997

The application process may respond to the A_Uwrite_Memory.ind primitive with an
A_Uwrite_Memory.res primitive containing the requested number of octets of the
associated memory area. The value of the associated memory area shall be explicitly
read back after writing to it. If the remote application process has a problem, e.g.
memory area unreachable or protected or an illegal number of octets is requested, then
the number in the A_UREAD_MEMORY_RES_PDU shall be zero and shall contain no
data.

The layer-7 is mapping a T_Data.ind primitive with tsdu=
A_UREAD_MEMORY_RES_PDU to an A_Uwrite_Memory.con primitive if an
A_UWRITE_MEMORY_REQ_PDU has been sent before over this connection. The
arguments physical_address/MAC-address and class are mapped to the corresponding
arguments of the A_Write_Memory.con primitive.
A_Uwrite_Memory.req(MAC-address,physical-address, class, number,

memory_address)
MAC-Address Destination Address of MAC-Layer.
Physical_address: Destination Physical address of the EIB End

Device.
class: System, alarm, high or low priority.
number: number of octets to be written beginning

with the start address to increasing
addresses.

memory_address: Specifies the 16-bit start address.
data: the octet(s) to be written.

A_Uwrite_Memory.ind(MAC-address,physical-address, class, number,
memory_address)

MAC-Address Source Address of MAC-Layer.
Physical_address: Source Physical address of the EIB End

Device.
class: System, alarm, high or low priority.
number: Number of octets to be written beginning

with the start address to increasing
addresses.

memory_address: Specifies the 16-bit start address.
data: The octet(s) to be written.

A_Uwrite_Memory.con(MAC-address,physical-address, class, number,
memory_address, data, a_status)

MAC-Address Source Address of MAC-Layer.
Physical_address: Source Physical address of the EIB End

Device.
class: System, alarm, high or low priority.
number: Number of octets written beginning with the

start address to increasing addresses, or
zero to indicate a problem.

memory_address: Specifies the 16-bit start address.
data: The octet(s) read back or no data.
a_status: OK; the service sent successfully
 not OK; the transmission of the service didn’t

succeed

A_Uwrite_Memory.res(MAC-address,physical-address, class, number,
memory_address, data)

MAC-Address Destination Address of MAC-Layer.
Physical_address: Destination Physical address of the EIB End

Device.
class: System, alarm, high or low priority.
number: Number of octets written beginning with the

start address to increasing addresses, or
zero to indicate a problem.

memory_address: Specifies the 16-bit start address.
data: The octet(s) read back or no data.

Page 67
prEN ### 1997

15.8 A_Uwrite_Memory_Bit Service (optional)

The A_Uwrite_Memory_Bit service is optional. The A_Uwrite_Memory_Bit.req
primitive is applied by the user of layer-7, to modify between 1 and 40 bits in a
contiguous block of up to 5 octets in the address space of the remote application
controller. The parameter memory_address specifies the 16-bit start address and number
contains the number of octets to be modified beginning with the start address to
increasing addresses. The A_Uwrite_Memory_Bit allows to

− set individual bits of the contiguous block to zero

− set individual bits of the contiguous block to one

− leave individual bits of the contiguous block unmodified

− invert individual bits of the contiguous block

using the parameters and_data and xor_data. Both parameters shall have the same
number of octets as the contiguous block indicated in the parameter number. The
resulting value for each individual bit in the contiguous block is computed using the two
associated bits of and_data and xor_data with the following function (Figure 54):

result_bit(i) = (and_data_bit(i) AND block_bit(i)) XOR xor_data_bit(i)

and_data_bit(i) xor_data_bit(i) result_bit(i)

0 0 0

0 1 1

1 0 block_bit(i)

1 1 NOT block_bit(i)

Figure 54: Function Table for Write_Memory_Bit Services

The service may be confirmed by the remote application process.

The local layer-7 accepts the service request and passes it with a T_Data.req to the local
layer-4. The parameters physical_address/MAC-address and class are mapped to the
corresponding parameters of the T_Data.req primitive, the tsdu is an
A_UWRITE_MEMORY_BIT_REQ_PDU.

The remote layer-7 is mapping a T_Data.ind primitive with tsdu=
A_UWRITE_MEMORY_BIT_REQ_PDU to an A_Uwrite_Memory_Bit.ind primitive.
The arguments physical_address/MAC-address and class are mapped to the
corresponding arguments of the A_Uwrite_Memory_Bit.ind primitive.

Octet 11 Octet 12 Octet 13 Octet 14 Octet 15 Octet 16-(n) Octet (n+1)-(m)

number address(hi) address(lo) and_data xor_data

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

AP
C

I
AP

C
I

AP
C

I
AP

C
I

AP
C

I
AP

C
I

AP
C

I
AP

C
I

AP
C

I
AP

C
I

1 0 1 1 0 0 0 1 0 0

n=10+number m=10 + 2 x number

Figure 55: A_UWRITE_MEMORY_BIT_REQ_PDU

The application process may respond to the A_Uwrite_Memory_Bit.ind primitive with
an A_Uwrite_Memory.res primitive containing the requested number of octets of the
associated memory area. The value of the associated memory area shall be explicitly
read back after writing to it. If the remote application process has a problem, e.g.
memory area unreachable or protected or an illegal number of octets is requested, then

Page 68
prEN ### 1997

the parameter number in the A_UREAD_MEMORY_RES_PDU shall be zero and shall
contain no data.

The layer-7 is mapping a T_Data.ind primitive with tsdu=
A_UREAD_MEMORY_RES_PDU to an A_Uwrite_Memory_Bit.con primitive if an
A_UWRITE_MEMORY_BIT_REQ_PDU has been sent before over this connection.
The arguments physical_address/MAC-address and class are mapped to the
corresponding arguments of the A_Write_Memory_Bit.con primitive.
A_Uwrite_Memory_Bit.req(MAC-address,physical-address, class, number,

memory_address, and_data, xor_data)
MAC-Address Destination Address of MAC-Layer
Physical_address: Destination Physical address of the EIB End

Device.
class: System, alarm, high or low priority.
number: Number of octets to be written beginning

with the start address to increasing
addressess

memory_address: Specifies the 16-bit start addresss
and_data: See Figure 54s
xor_data: See Figure 54s

A_Uwrite_Memory_Bit.ind(MAC-address,physical-address, class, number,
memory_address, and_data, xor_data)

MAC-Address Source Address of MAC-Layer.
Physical_address: Source Physical address of the EIB End

Device.
class: System, alarm, high or low priority.
number: Number of octets to be written beginning

with the start address to increasing
addresses.

memory_address: Specifies the 16-bit start address.
and_data: See Figure 54.
xor_data: See Figure 54.

A_Uwrite_Memory_Bit.con(MAC-address,physical-address, class, number,
memory_address, and_data, xor_data,
a_status)

MAC-Address Source Address of MAC-Layer.
Physical_address: Source Physical address of the EIB End

Device.
class: System, alarm, high or low priority
number: Number of octets written beginning with the

start address to increasing addresses, or
zero to indicate a problem

memory_address: Specifies the 16-bit start address
and_data: See Figure 54.
xor_data: See Figure 54.
a_status: OK; the service sent successfully
 not OK; the transmission of the service didn’t

succeed

A_Uwrite_Memory_Bit.res(MAC-address,physical-address, class, number,
memory_address, data)

MAC-Address Destination Address of MAC-Layer.
Physical_address: Destination Physical address of the EIB End

Device.
class: System, alarm, high or low priority.
number: Number of octets written beginning with the

start address to increasing addresses, or
zero to indicate a problem.

memory_address: Specifies the 16-bit start address.
data: the octet(s) read back or no data.

15.9 A_Uread_MfactInfo Service (optional)

The A_Uread_MfactInfo service is optional. The A_Uread_MfactInfo.req primitive is
applied by the user of layer-7, to read manufacturer information in a communication
partner. The manufacturer information consists of three octets. Octet one indicates the

Page 69
prEN ### 1997

manufacturer identification of the device. Octets two and three are manufacturer
specific. The service is confirmed by the remote application process.

The local layer-7 accepts the service request and passes it with a T_Data.req to the local
layer-4. The parameters physical_address/MAC-address and class are mapped to the
corresponding parameters of the T_Data.req primitive, the tsdu is an
A_UREAD_MFACTINFO_REQ_PDU.

The remote layer-7 is mapping a T_Data.ind primitive with tsdu=
A_UREAD_MFACTINFO_REQ_PDU to an A_Uread_MfactInfo.ind primitive. The
arguments physical_address/MAC-address and class are mapped to the corresponding
arguments of the A_Uread_MfactInfo.ind primitive.

Octet 11 Octet 12

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

AP
C

I
AP

C
I

AP
C

I
AP

C
I

AP
C

I
AP

C
I

AP
C

I
AP

C
I

AP
C

I
AP

C
I

1 0 1 1 0 0 0 1 0 1

Figure 56: A_UREAD_MFACTINFO_REQ_PDU

The remote application process shall respond to the A_Uread_MfactInfo.ind primitive
with an A_Uread_MfactInfo.res primitive containing the manufacturer information.

Octet 11 Octet 12 Octet 13 Octet 14 Octet 15

manufacturer_id manufact. specific manufact. specific

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

AP
C

I
AP

C
I

AP
C

I
AP

C
I

AP
C

I
AP

C
I

AP
C

I
AP

C
I

AP
C

I
AP

C
I

1 0 1 1 0 0 0 1 1 0

Figure 57: A_UREAD_MFACTINFO_RES_PDU

The remote layer-7 accepts the service response and passes it with a T_Data.req to the
local layer-4. The parameters physical_address/MAC-address and class are mapped to
the corresponding parameters of the T_Data.req primitive, the tsdu is a
A_UREAD_MFACTINFO_RES_PDU.

The layer-7 is mapping a T_Data.ind primitive with tsdu=
A_UREAD_MFACTINFO_RES_PDU to an A_Uread_MfactInfo.con primitive. The
arguments physical_address/MAC-address and class are mapped to the corresponding
arguments of the A_Uread_MfactInfo.con primitive.
A_Uread_MfactInfo.req(MAC-address,physical-address, class)
MAC-Address Destination Address of MAC-Layer
Physical_address: Destination Physical address of the EIB End

Device.
class: System, alarm, high or low priority.

A_Uread_MfactInfo.ind(MAC-address,physical-address, class)
MAC-Address Source Address of MAC-Layer.
Physical_address: Source Physical address of the EIB End

Device.
class: System, alarm, high or low priority.

Page 70
prEN ### 1997

A_Uread_MfactInfo.con(MAC-address,physical-address, class, a_status)
MAC-Address Source Address of MAC-Layer.
Physical_address: Source Physical address of the EIB End

Device.
class: System, alarm, high or low priority.
a_status: OK; the service sent successfully
 not OK; the transmission of the service didn’t

succeed

A_Uread_MfactInfo.res(MAC-address,physical-address, class, mfact_info)
MAC-Address Destination Address of MAC-Layer
Physical_address: Destination Physical address of the EIB End

Device.
class: System, alarm, high or low priority.
mfact_info: Three octets manufacturer information.

Page 71
prEN ### 1997

16 Layer-7 Services on one-to-one connection-oriented Communication
Relationships

A one-to-one connection-oriented communication relationship connects one EIB end
device with another EIB end device. The following services can be applied on one-to-
one connection-oriented communication relationships if the connection is established
(see layer-4 state machine). Due to the behavior of the layer-4 state machine, the user of
the layer-7 has to take into account that the connection may be released by the remote
communication partner or by an error detected in the communication protocol.
Therefore a T_Disconnect.ind primitive may occur at any time, i.e. also if the user of
layer-7 is waiting for a confirmation from the layer-7.

The layer-7 also provides an optional access protection mechanism on the one-to-one
connection-oriented communication relationship by an authorization procedure. This
procedure is described in Chapter 16.7 A_Authorize Service.

16.1 A_Read_Adc Service

The A_Read_Adc.req primitive is applied by the user of layer-7, to read the value of the
AD-converter. The service is confirmed by the remote application process containing
the value of the converter.

The local layer-7 accepts the service request and passes it with a T_Data.req to the local
layer-4. The parameters cr_id and class are mapped to the corresponding parameters of
the T_Data.req primitive, the tsdu is an A_READ_ADC_REQ_PDU.

The remote layer-7 is mapping a T_Data.ind primitive with tsdu=
A_READ_ADC_REQ_PDU to an A_Read_Adc.ind primitive. The arguments cr_id and
class are mapped to the corresponding arguments of the A_Read_Adc.ind primitive.

The A_READ_ADC_REQ_PDU contains the channel number of the AD-converter and
the number of consecutive read operations to the AD-converter.

Octet 11 Octet 12 Octet 13

read_count

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

AP
C

I
AP

C
I

AP
C

I
AP

C
I

ch
an

ne
l_

no
ch

an
ne

l_
no

ch
an

ne
l_

no
ch

an
ne

l_
no

ch
an

ne
l_

no
ch

an
ne

l_
no

0 1 1 0

Figure 58: A_READ_ADC_REQ_PDU

The application process shall respond to the A_Read_Adc.ind primitive with an
A_Read_Adc.res primitive containing the value of the AD-converter computed by the
summation of the consecutive CPU access. If the remote application process has a
problem, e.g. overflow when computing the summation, or wrong channels number,
then the read_count of the A_READ_ADC_RES_PDU shall be zero.

Page 72
prEN ### 1997

Octet 11 Octet 12 Octet 13 Octet 14 Octet 15

read_count Sum of AD_converter_access

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

channel_no value hi value lo

AP
C

I
AP

C
I

AP
C

I
AP

C
I

0 1 1 1

Figure 59: A_READ_ADC_RES_PDU

The remote layer-7 accepts the service response and passes it with a T_Data.req to the
local layer-4. The parameters cr_id and class are mapped to the corresponding
parameters of the T_Data.req primitive, the tsdu is a A_READ_ADC_RES_PDU.

The layer-7 is mapping a T_Data.ind primitive with tsdu= A_READ_ADC_RES_PDU
to an A_Read_Adc.con primitive. The arguments cr_id and class are mapped to the
corresponding arguments of the A_Read_Adc.con primitive.
A_Read_Adc.req(cr_id, class, channel_no, read_count)
cr_id: identifier of the communication relationship
class: system, alarm, high or low priority
channel_no: The channel_no of the AD-converter
read_count: number of desired consecutive CPU access to

the AD-converter

A_Read_Adc.ind(cr_id, class, channel_no, read_count)
cr_id: identifier of the communication relationship
class: system, alarm, high or low priority
channel_no: The channel_no of the AD-converter
read_count: number of desired consecutive CPU access to

the AD-converter

A_Read_Adc.con(cr_id, class, channel_no, read_count)
cr_id: identifier of the communication relationship
class: system, alarm, high or low priority
channel_no: The channel_no of the AD-converter
read_count: number of CPU access executed to the AD-

converter or zero to indicate a problem

A_Read_Adc.res(cr_id, class, channel_no, read_count, sum)
cr_id: identifier of the communication relationship
class: system, alarm, high or low priority
channel_no: The channel_no of the AD-converter
read_count: number of CPU access executed to the AD-

converter or zero to indicate a problem
sum: sum of AD-converter values

16.2 A_Read_Memory Service

The A_Read_Memory.req primitive is applied by the user of layer-7, to read between 1
and 12 octets in the address space of the remote communication controller. The
parameter memory_address specifies the 16-bit start address and number contains the
number of octets to be read beginning with the start address to increasing addresses. The
service is confirmed by the remote application process with the contents of the address
space.

The local layer-7 accepts the service request and passes it with a T_Data.req to the local
layer-4. The parameters cr_id and class are mapped to the corresponding parameters of
the T_Data.req primitive, the tsdu is an A_READ_MEMORY_REQ_PDU.

The remote layer-7 is mapping a T_Data.ind primitive with tsdu=
A_READ_MEMORY_REQ_PDU to an A_Read_Memory.ind primitive. The
arguments cr_id and class are mapped to the corresponding arguments the
A_Read_Memory.ind primitive.

Page 73
prEN ### 1997

Octet 11 Octet 12 Octet 13 Octet 14

number address(hi) address(lo)

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

AP
C

I
AP

C
I

AP
C

I
AP

C
I

1 0 0 0 0 0

Figure 60: A_READ_MEMORY_REQ_PDU

The remote application process shall respond to the A_Read_Memory.ind primitive
with an A_Read_Memory.res primitive containing the number of octets read beginning
with the start address to increasing addresses. If the remote application process has a
problem, e.g. address space unreachable or protected or an illegal number of octets is
requested, then the parameter number of the A_READ_MEMORY_RES_PDU shall be
zero and shall contain no data.

Octet 11 Octet 12 Octet 13 Octet 14 Octet 15-N

number address(hi) address(lo) data

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

AP
C

I
AP

C
I

AP
C

I
AP

C
I

1 0 0 1 0 0

N=0+number

Figure 61: A_READ_MEMORY_RES_PDU

The remote layer-7 accepts the service response and passes it with a T_Data.req to the
local layer-4. The parameters cr_id and class are mapped to the corresponding
parameters of the T_Data.req primitive, the tsdu is a A_READ_MEMORY_RES_PDU.

The layer-7 is mapping a T_Data.ind primitive with tsdu=
A_READ_MEMORY_RES_PDU to an A_Read_Memory.con primitive. The
arguments cr_id and class are mapped to the corresponding arguments of the
A_Read_Memory.con primitive.
A_Read_Memory.req(cr_id, class, number, memory_address)
cr_id: identifier of the communication relationship
class: system, alarm, high or low priority
number: number of octets to be read beginning with

the start address to increasing addresses
memory_address: specifies the 16-bit start address

A_Read_Memory.ind(cr_id, class, number, memory_address)
cr_id: identifier of the communication relationship
class: system, alarm, high or low priority
number: number of octets to be read beginning with

the start address to increasing addresses
memory_address: specifies the 16-bit start address

A_Read_Memory.con(cr_id, class, number, memory_address)
cr_id: identifier of the communication relationship
class: system, alarm, high or low priority
number: number of octets read beginning with the

start address to increasing addresses, or
zero to indicate a problem

memory_address: specifies the 16-bit start address

Page 74
prEN ### 1997

A_Read_Memory.res(cr_id, class, number, memory_address, data)
cr_id: identifier of the communication relationship
class: system, alarm, high or low priority
number: number of octets read beginning with the

start address to increasing addresses, or
zero to indicate a problem

memory_address: specifies the 16-bit start address
data: the octet(s) read

16.3 A_Write_Memory Service

The A_Write_Memory.req primitive is applied by the user of layer-7, to write between 1
and 12 octets in the address space of the remote communication controller. The
parameter memory_address specifies the 16-bit start address and number contains the
number of octets to be written beginning with the start address to increasing addresses.
The service may be confirmed by the remote application process.

The local layer-7 accepts the service request and passes it with a T_Data.req to the local
layer-4. The parameters cr_id and class are mapped to the corresponding parameters of
the T_Data.req primitive, the tsdu is an A_WRITE_MEMORY_REQ_PDU.

The remote layer-7 is mapping a T_Data.ind primitive with tsdu=
A_WRITE_MEMORY_REQ_PDU to an A_Write_Memory.ind primitive. The
arguments cr_id and class are mapped to the corresponding arguments of the
A_Write_Memory.ind primitive.

Octet 11 Octet 12 Octet 13 Octet 14 Octet 15-N

number address(hi) address(lo) data

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

AP
C

I
AP

C
I

AP
C

I
AP

C
I

1 0 1 0 0 0

N=9+number

Figure 62: A_WRITE_MEMORY_REQ_PDU

The application process may respond to the A_Write_Memory.ind primitive with an
A_Write_Memory.res primitive containing the requested number of octets of the
associated memory area. If the verify mode is activ the value of the associated memory
area shall be explicitly read back after writing to it. If the remote application process has
a problem, e.g. memory area unreachable or protected or an illegal number of octets is
requested, then the parameter number in the A_READ_MEMORY_RES_PDU shall be
zero and shall contain no data.

The layer-7 is mapping a T_Data.ind primitive with tsdu=
A_READ_MEMORY_RES_PDU to an A_Write_Memory.res primitive if an
A_WRITE_MEMORY_REQ_PDU has been sent before over this connection. The
arguments cr_id and class are mapped to the corresponding arguments of the
A_Write_Memory.con primitive.
A_Write_Memory.req(cr_id, class, number, memory_address, data)
cr_id: identifier of the communication relationship
class: system, alarm, high or low priority
number: number of octets to be written beginning

with the start address to increasing
addresses

memory_address: specifies the 16-bit start address
data: the octet(s) to be written

Page 75
prEN ### 1997

A_Write_Memory.ind(cr_id, class, number, memory_address, data)
cr_id: identifier of the communication relationship
class: system, alarm, high or low priority
number: number of octets to be written beginning

with the start address to increasing
addresses

memory_address: specifies the 16-bit start address
data: the octet(s) to be written

A_Write_Memory.con(cr_id, class, number, memory_address, data)
cr_id: identifier of the communication relationship
class: system, alarm, high or low priority
number: number of octets written beginning with the

start address to increasing addresses, or
zero to indicate a problem

memory_address: specifies the 16-bit start address
data: the octet(s) read back or no data

A_Write_Memory.res(cr_id, class, number, memory_address, data)
cr_id: identifier of the communication relationship
class: system, alarm, high or low priority
number: number of octets written beginning with the

start address to increasing addresses, or
zero to indicate a problem

memory_address: specifies the 16-bit start address
data: the octet(s) read back or no data

16.4 A_Read_Mask_Version Service

The A_Read_Mask_Version.req primitive is applied by the user of layer-7, to read the
mask information (2 octets) of the communication controller in a communication
partner. The service is confirmed by the remote application process containing the mask
information.

The local layer-7 accepts the service request and passes it with a T_Data.req to the local
layer-4. The parameters cr_id and class are mapped to the corresponding parameters of
the T_Data.req primitive, the tsdu is an A_READ_MASK_VERSION_REQ_PDU.

The remote layer-7 is mapping a T_Data.ind primitive with tsdu=
A_READ_MASK_VERSION_REQ_PDU to an A_Read_Mask_Version.ind primitive.
The arguments cr_id and class are mapped to the corresponding arguments of the
A_Read_Mask_Version.ind primitive.

Octet 11 Octet 12

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

AP
C

I
AP

C
I

AP
C

I
AP

C
I

AP
C

I
AP

C
I

AP
C

I
AP

C
I

AP
C

I
AP

C
I

1 1 0 0 0 0 0 0 0 0

Figure 63: A_READ_MASK_VERSION_REQ_PDU

The remote application process shall respond to the A_Read_Mask_Version.ind
primitive with an A_Read_Mask_Version.res primitive containing the mask
information.

Page 76
prEN ### 1997

Octet 11 Octet 12 Octet 13 Octet 14

mask_version

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

AP
C

I
AP

C
I

AP
C

I
AP

C
I

AP
C

I
AP

C
I

AP
C

I
AP

C
I

AP
C

I
AP

C
I

1 1 0 1 0 0 0 0 0 0

Figure 64: A_READ_MASK_VERSION_RES_PDU

The remote layer-7 accepts the service response and passes it with a T_Data.req to the
local layer-4. The parameters cr_id and class are mapped to the corresponding
parameters of the T_Data.req primitive, the tsdu is a
A_READ_MASK_VERSION_RES_PDU.

The layer-7 is mapping a T_Data.ind primitive with tsdu=
A_READ_MASK_VERSION_RES_PDU to an A_Read_Mask_Version.con primitive.
The arguments cr_id and class are mapped to the corresponding arguments of the
A_Read_Mask_Version.con primitive.
A_Read_Mask_Version.req(cr_id, class)
cr_id: identifier of the communication relationship
class: system, alarm, high or low priority

A_Read_Mask_Version.ind(cr_id, class)
cr_id: identifier of the communication relationship
class: system, alarm, high or low priority

A_Read_Mask_Version.res(cr_id, class, mask_version)
cr_id: identifier of the communication relationship
class: system, alarm, high or low priority
mask_version: the mask information of the communication

controller

A_Read_Mask_Version.con(cr_id, class, mask_version)
cr_id: identifier of the communication relationship
class: system, alarm, high or low priority

16.5 A_Restart Service

The A_Restart.req primitive is applied by the user of layer-7, to cause a reset of the
communication controller in the remote partner.

The service is not confirmed by the remote application process. The layer-7
confirmation is caused by the T_DATA_ACK_PDU from the remote layer-4.

The local layer-7 accepts the service request and passes it with a T_Data.req to the local
layer-4. The parameters cr_id and class are mapped to the corresponding parameters of
the T_Data.req primitive, the tsdu is an A_RESTART_REQ_PDU.

The remote layer-7 is mapping a T_Data.ind primitive with tsdu=
A_RESTART_REQ_PDU to an A_Restart.ind primitive. The arguments cr_id and class
are mapped to the corresponding arguments of the A_Restart.ind primitive.

The remote application process shall execute a reset which includes the communication
system, too. This may result in a breakdown of the layer-4 connection.

Page 77
prEN ### 1997

Octet 11 Octet 12

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

AP
C

I
AP

C
I

AP
C

I
AP

C
I

AP
C

I
AP

C
I

AP
C

I
AP

C
I

AP
C

I
AP

C
I

1 1 1 0 0 0 0 0 0 0

Figure 65: A_RESTART_REQ_PDU

The layer-7 is mapping a T_Data.con primitive to an A_Restart.con primitive. The
arguments cr_id and class are mapped to the corresponding arguments of the
A_Restart.con primitive.
A_Restart.req(cr_id, class)
cr_id: identifier of the communication relationship
class: system, alarm, high or low priority

A_Restart.ind(cr_id, class)
cr_id: identifier of the communication relationship
class: system, alarm, high or low priority

A_Restart.con(cr_id, class)
cr_id: identifier of the communication relationship
class: system, alarm, high or low priority

16.6 A_Write_Memory_Bit Service (optional)

The A_Write_Memory_Bit service is optional. The A_Write_Memory_Bit.req primitive
is applied by the user of layer-7, to modify between 1 and 48 bits in a contiguous block
of up to 6 octets in the address space of the remote communication controller. The
parameter memory_address specifies the 16-bit start address and number contains the
number of octets to be modified beginning with the start address to increasing addresses.
The A_Write_Memory_Bit allows to

− set individual bits of the contiguous block to zero

− set individual bits of the contiguous block to one

− leave individual bits of the contiguous block unmodified

− invert individual bits of the contiguous block

using the parameters and_data and xor_data. Both parameters shall have the same
number of octets as the contiguous block indicated in the parameter number. The
resulting value for each individual bit in the contiguous block is computed using the two
associated bits of and_data and xor_data with the following function (Figure 66):

result_bit(i) = (and_data_bit(i) AND block_bit(i)) XOR xor_data_bit(i)

and_data_bit(i) xor_data_bit(i) result_bit(i)

0 0 0

0 1 1

1 0 block_bit(i)

1 1 NOT block_bit(i)

Figure 66: Function Table for Write_Memory_Bit Services

The service may be confirmed by the remote application process.

Page 78
prEN ### 1997

The local layer-7 accepts the service request and passes it with a T_Data.req to the local
layer-4. The parameters cr_id and class are mapped to the corresponding parameters of
the T_Data.req primitive, the tsdu is an A_WRITE_MEMORY_BIT_REQ_PDU.

The remote layer-7 is mapping a T_Data.ind primitive with tsdu=
A_WRITE_MEMORY_BIT_REQ_PDU to an A_Write_Memory_Bit.ind primitive.
The arguments cr_id and class are mapped to the corresponding arguments of the
A_Write_Memory_Bit.ind primitive.

Octet 11 Octet 12 Octet 13 Octet 14 Octet 15 Octet 16-(n) Octet (n+1)-(m)

number address(hi) address(lo) and_data xor_data

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

AP
C

I
AP

C
I

AP
C

I
AP

C
I

AP
C

I
AP

C
I

AP
C

I
AP

C
I

AP
C

I
AP

C
I

1 0 1 1 0 0 0 1 0 0

n=10+number m=10 + 2 x number

Figure 67: A_WRITE_MEMORY_BIT_REQ_PDU

If the verify mode is activ the application process respond to the
A_Write_Memory_Bit.ind primitive with an A_Read_Memory.res primitive containing
the requested number of octets of the associated memory area. The value of the
associated memory area shall be explicitly read back after writing to it. If the remote
application process has a problem, e.g. memory area unreachable or protected or an
illegal number of octets is requested, then the parameter number in the
A_READ_MEMORY_RES_PDU shall be zero and shall contain no data.

The layer-7 is mapping a T_Data.ind primitive with tsdu=
A_READ_MEMORY_RES_PDU to an A_Write_Memory_Bit.con primitive if an
A_WRITE_MEMORY_BIT_REQ_PDU has been sent before over this connection. The
arguments cr_id and class are mapped to the corresponding arguments of the
A_Write_Memory_Bit.con primitive.
A_Write_Memory_Bit.req(cr_id, class, number, memory_address, and_data,

xor_data)
cr_id: identifier of the communication relationship
class: system, alarm, high or low priority
number: number of octets to be written beginning

with the start address to increasing
addresses

memory_address: specifies the 16-bit start address
and_data: see Figure 66
xor_data: see Figure 66

A_Write_Memory_Bit.ind(cr_id, class, number, memory_address, and_data,
xor_data)

cr_id: identifier of the communication relationship
class: system, alarm, high or low priority
number: number of octets to be written beginning

with the start address to increasing
addresses

memory_address: specifies the 16-bit start address
and_data: see Figure 66
xor_data: see Figure 66

Page 79
prEN ### 1997

A_Write_Memory_Bit.con(cr_id, class, number, memory_address, and_data,
xor_data)

cr_id: identifier of the communication relationship
class: system, alarm, high or low priority
number: number of octets written beginning with the

start address to increasing addresses, or
zero to indicate a problem

memory_address: specifies the 16-bit start address
and_data: see Figure 66
xor_data: see Figure 66

A_Write_Memory_Bit.res(cr_id, class, number, memory_address, data)
cr_id: identifier of the communication relationship
class: system, alarm, high or low priority
number: number of octets written beginning with the

start address to increasing addresses, or
zero to indicate a problem

memory_address: specifies the 16-bit start address
data: the octet(s) read back or no data

16.7 A_Authorize Service

The A_Authorize.req primitive is applied by the user of layer-7, to inform the
communication partner about the key (unsigned32). The remote partner knows a number
of valid keys and is able to associate a valid key to an access level. This access level is
stored as the current access level of this partner and sent back in an
A_AUTHORIZE_RES_PDU. Access levels (unsigned4) between 0 (maximum level,
i.e. maximum access rights) and 4 (minimum level, i.e. minimum access rights) or 0
(maximum level, i.e. maximum access rights) and 15 (minimum level, i.e. minimum
access rights) are allowed. If the communication partner doesn’t authorize himself or if
the key is not a valid key, the current access level is set to minimum access level.

The current access level may be used by the remote application process to decide
whether or not a communication partner is allowed to request a certain read or write
operation.

The remote user may associate different keys to different access levels and handle
following services on this connection depending on the current access level.

A current access level is valid until the connection is released or a new key is indicated
with the A_Authorize service.

The local layer-7 accepts the service request and passes it with a T_Data.req to the local
layer-4. The parameters cr_id and class are mapped to the corresponding parameters of
the T_Data.req primitive, the tsdu is an A_AUTHORIZE_REQ_PDU.

The remote layer-7 is mapping a T_Data.ind primitive with tsdu=
A_AUTHORIZE_REQ_PDU to an A_Authorize.ind primitive. The arguments cr_id
and class are mapped to the corresponding arguments of the A_Authorize.ind primitive.

Octe t 11 Octe t 12 Octe t 13 Octe t 14 Octe t 15 Octe t 16 Octe t 17
num b e r K e y

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

AP
C

I
AP

C
I

AP
C

I
AP

C
I

AP
C

I
AP

C
I

AP
C

I
AP

C
I

AP
C

I
AP

C
I

1 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0

Figure 68: A_AUTHORIZE_REQ_PDU

Page 80
prEN ### 1997

The remote application process shall respond to the A_Authorize.ind primitive with an
A_Authorize.res primitive containing the associated access level. If the key is not a
valid key, the remote application process shall respond with the minimum access level
which becomes the current access level.

Octe t 11 Octe t 12 Octe t 13
num b e r level

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

AP
C

I
AP

C
I

AP
C

I
AP

C
I

AP
C

I
AP

C
I

AP
C

I
AP

C
I

AP
C

I
AP

C
I

1 1 1 1 0 1 0 0 1 0

Figure 69: A_AUTHORIZE_RES_PDU

The remote layer-7 accepts the service response and passes it with a T_Data.req to the
local layer-4. The parameters cr_id and class are mapped to the corresponding
parameters of the T_Data.req primitive, the tsdu is an A_AUTHORIZE_RES_PDU.

The layer-7 is mapping a T_Data.ind primitive with tsdu= A_AUTHORIZE_RES_PDU
to an A_Authorize.con primitive. The arguments cr_id and class are mapped to the
corresponding arguments of the A_Authorize.con primitive.
A_Authorize.req(cr_id, class, key)
cr_id: identifier of the communication relationship
class: system, alarm, high or low priority
key: the key of the requester

A_Authorize.ind(cr_id, class, key)
cr_id: identifier of the communication relationship
class: system, alarm, high or low priority
key: the key of the requester

A_Authorize.con(cr_id, class, key)
cr_id: identifier of the communication relationship
class: system, alarm, high or low priority
key: the key of the requester

A_Authorize.res(cr_id, class, level)
cr_id: identifier of the communication relationship
class: system, alarm, high or low priority
level: the granted access level to the requester

16.8 A_Setkey Service

The A_Setkey.req primitive is applied by the user of layer-7, to modify or delete a key
associated to a certain access level in the communication partner. The parameter level of
the A_Setkey.req primitive indicates the access level which shall be modified, the
parameter key indicates the new key value.

Each EIB end device is able to handle up to 4 or 16 different keys that are associated to
the 4 or 16 different access levels:

Page 81
prEN ### 1997

Key Access Level

Key for level 0 0

Key for level 1 1

Key for level 2 2

Key for level 3 3

Key for level 4 4

Key for level 5 5

Key for level 6 6

Key for level 7 7

Key for level 8 8

Key for level 9 9

Key for level 10 10

Key for level 11 11

Key for level 12 12

Key for level 13 13

Key for level 14 14

Key for level 15 15

Figure 70: Association Table of Keys to Access Levels

If the key indicated in the A_Setkey.ind primitive is FFFF FFFFh, then the
corresponding key entry in the association table of keys to access levels shall be set to
invalid, i.e. then there is no key associated to the corresponding level any more. The
current access level must be less or equal to the access level indicated in the
A_Setkey.ind primitive, otherwise the remote application process shall return FFh in the
A_SETKEY_RES_PDU. In all other cases the remote application process shall store the
indicated key in the corresponding entry of the association table of keys to access levels
and respond to the A_Setkey.ind primitive with an A_Setkey.res primitive containing
the access level set for the corresponding key.

The local layer-7 accepts the service request and passes it with a T_Data.req to the local
layer-4. The parameters cr_id and class are mapped to the corresponding parameters of
the T_Data.req primitive, the tsdu is an A_SETKEY_REQ_PDU.

The remote layer-7 is mapping a T_Data.ind primitive with tsdu=
A_SETKEY_REQ_PDU to an A_Setkey.ind primitive. The arguments cr_id and class
are mapped to the corresponding arguments of the A_Setkey.ind primitive.

Octe t 11 Octe t 12 Octe t 13 Octe t 14 Octe t 15 Octe t 16 Octe t 17
num b e r level K e y

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

AP
C

I
AP

C
I

AP
C

I
AP

C
I

AP
C

I
AP

C
I

AP
C

I
AP

C
I

AP
C

I
AP

C
I

1 1 1 1 0 1 0 0 0 1

Figure 71: A_SETKEY_REQ_PDU

The remote user shall process the key as described above and shall respond with the
A_Setkey.res primitive.

Page 82
prEN ### 1997

Octe t 11 Octe t 12 Octe t 13
num b e r level

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

AP
C

I
AP

C
I

AP
C

I
AP

C
I

AP
C

I
AP

C
I

AP
C

I
AP

C
I

AP
C

I
AP

C
I

1 1 1 1 0 1 0 0 1 0

Figure 72: A_SETKEY_RES_PDU

The remote layer-7 accepts the service response and passes it with a T_Data.req to the
local layer-4. The parameters cr_id and class are mapped to the corresponding
parameters of the T_Data.req primitive, the tsdu is a A_SETKEY_RES_PDU.

The layer-7 is mapping a T_Data.ind primitive with tsdu= A_SETKEY_RES_PDU to
an A_Setkey.con primitive. The arguments cr_id and class are mapped to the
corresponding arguments of the A_Setkey.con primitive.
A_Setkey.req(cr_id, class, level, key)
cr_id: identifier of the communication relationship
class: system, alarm, high or low priority
level: the access level for which the key shall be

modified
key: the new value of the key or FFFF FFFFh to

delete the key

A_Setkey.ind(cr_id, class, key)
cr_id: identifier of the communication relationship
class: system, alarm, high or low priority
level: the access level for which the key shall be

modified
key: the new value of the key or FFFF FFFFh to

delete the key

A_Setkey.con(cr_id, class, level)
cr_id: identifier of the communication relationship
class: system, alarm, high or low priority
key: the new value of the key or FFFF FFFFh to

delete the key

A_Setkey.res(cr_id, class, level)
cr_id: identifier of the communication relationship
class: system, alarm, high or low priority
level: the access level for which the associated

key has been modified, or the minimum access
level if it hasn’t been modified

17 Parameters of Layer-7

The association table is the only parameter of layer-7. The association table maps
cr_ids of multicast communication relationships to group-objects that are identified
through local group-object references. The association table may be downloaded using
the network management.

Associationtable: maps cr_ids of multicast communication relationships to group-
object references and vice versa.

EIB-Object Associationtable
maps cr_ids of connectionless communication relationships to
physical address, objectindex and property ID

Page 83
prEN ### 1997

Page 84
prEN ### 1997

18 Network Management

Network management supports the end user of an EIB network during the installation,
configuration and maintenance of the EIB network. The whole network management is
based on a connection-oriented and broadcast services of the application layer, and on
the object server functionality.

18.1 Configuration Management Sequence

Configuration management of an EIB device starts with defining its physical address
and SystemID. Application layer services on broadcast communication relationships in
order to set or read the physical address / SystemID of a device are:

− A_Read_SystemID

− A_Set_SystemID

− A_Read_Physaddr

− A_Set_Physaddr

− A_Read_Physaddr_Serno

− A_Set_Physaddr_Serno.

The network management tool must ensure that the physical addresses are unique in one
EIB-system and physical address/SystemID are unique in the network. As soon as an
EIB device has its unique physical address, the network management tool helps the end
user to integrate the EIB end device into the logical links, i.e. into communication
relationships with its communication partners. Multicast communication relationships
need entries of group addresses in the address table of layer-2 of the EIB end device.
The address table contains the group addresses of group-communication-objects that are
existing in the device.

The communication relationship list of layer-4 is implicitly defined based on the use of
the address table and the identification of physical addresses with cr_ids.

Then the association table of layer-7 can be set up, linking the group-communication-
objects of the EIB end device to the multicast communication relationships of the EIB
end device.

The network management then makes use of the connection-oriented one-to-one
communication relationship in order to download the address table, the association table
and the internal user application to the EIB end device.

Once the connection is established with the T_Connect service of layer-4, the network
management is using the A_Authorize service to get the necessary access rights. The
network management shall behave according a specific download procedure. The
download procedure consist of a sequence of A_Property_Read, A_Property_Write and
A_Write_Memory services to download the address table, the association table and the
internal user application.

If access protection is required, then the keys should be set using the A_Setkey service.

Page 85
prEN ### 1997

18.1.1 Setting the Physical Address and the System-ID

18.1.1.1 Setting the physical address by pressing program button
The physical address and system ID are programmed in the following way:

Check for Existence
1. Try to connect (T_CONNECT) to a device with the specified physical address/SystemID.

Check for selection
2. Check using the PhysAddrRead- and ReadSystemID-services via broadcast, whether the

programming button of a device was pressed, inform the user, and wait.
In the case of multiple selection abort the procedure with an error message.
In the case that a device with the specified physical address/SystemID was found but is
not selected abort the procedure with an error message.

Programming the Physical Address / SystemID
3. Program the physical address using the PhysAddrWrite-service via broadcast.
4. Program the System-ID using the SetSystemID-service via broadcast.

Verify Programming
5. Set up a communication connection to the specified physical address/SystemID.
6. Use the Reset-service to reset the device.

Note with this operation the programming LED is switch off, and the communication
connection breaks down.

18.1.1.2 Setting the remote physical address/SystemID by serial number
In the case that the device which should be programmed has a known serial number the
A_READ_PHYSADDR_Serno and the A_WRITE_PHYSADDR_Serno can be used as
follows:

Check for Existence
1. Try to connect (T_CONNECT) to a device with the specified physical address / SystemID.

Check for selection
2. Check using the PhysAddrReadSerialno-service via broadcast, whether the device with

the specified serial number exists or not.
In the case that a device with the specified physical address/SystemID was found but is
not specified serial number abort the procedure with an error message.

Programming the Physical Address / System-ID
3. Program the physical address / stymied using the PhysAddrWriteSerialno-service via

broadcast.
Verify Programming

4. Set up a communication connection to the specified physical address / SystemID.
5. Use the Reset-service to reset the device.

Note with this operation the communication connection breaks down.

18.1.2 Access Protection

When a EIB-Device supports access protection then access level 0, which has the most
privileges, is reserved for the system. The lowest Access level is reserved for free access
without authorisation.

18.1.2.1 Authorisation
The purpose of the A_Authorize and the A_Setkey services on a one-to-one connection-
oriented communication relationships is to authorise subsequent object accesses of the
service client at the remote communication partner.

The user layer implementation shall realise at least the server part of those services as
described in Applicationlayer in the respective clauses.

Page 86
prEN ### 1997

To protect the EIB-Device from unauthorised access two kinds of access protections
may be implemented in the EIB-Device. First the protection for property access and
second the protection for direct memory access. The protection mechanism allows to
protect devices against unauthorised access. But only the management-operations are
protected not the normal operation (AL).

The protection is realised by a simple password check after the connection comes up.
An authorisation is only valid for the lifetime of a connection. To disable the memory-
protection there is a mechanism in the device-management to do it. One device sends a
M_AUTHORIZE-Service with an management password to request management access
to a device. The device then verifies the identity of the requester by verifying the
password. If the password is corresponding to an entry in the password list then the
requester is accepted and both applications are informed, else the connection-mode
communication is terminated.

If access authorisation is enabled, then access will automatically be disabled at
following conditions:

• after reset

• after each termination of a communication-connection

• at the beginning of a communication-connection (open)

• at the beginning of the authorisation-procedure.

The authorisation is done by sending the message

T_DATA (APCI=AuthorizeRequest, Key)

The EIB-Devices responds with a message

T_DATA (APCI=AuthorizeResponse, CurrentAccessLevel)

To modify access rights one must have an access level at least as low (as number) as the
lowest level for which the access right should be changed. There is only one key per
access level possible. A new key overwrites always the old key. To delete a key one
must set the key for that access level to (FFFFFFFFH).

A key is set by sending the message

T_DATA(APCI=SetKeyRequest, AccessLevel, Key)

The EIB-Devices responds with a message

T_DATA(APCI=SetKeyResponse, AccessLevel)

If Authorisation is required at least the highest AccessLevel must be set because a
connection has always the level of the highest deleted key.

18.2 Device Model

In this chapter the device model is described from the tool’s point of view. This means
that many aspects of the device model which are not relevant for a tool are skipped.

Page 87
prEN ### 1997

18.2.1 Major Parts of an EIB Device

From the tool’s point of view the EIB-Device consists of 6 major parts. These are:

1. System Parameters

2. Address Table

3. Association Table

4. Application Program (included Group Communication Objects and User-EIB-
Objects)

5. Interface Program

6. EIB-Object Associationtable

The location and interpretation of these major parts are described later. Some of these
major parts may be loadable from a tool.

18.2.2 Load Procedure for Device Configuration Data

The Load Procedure for Device Configuration Data defines the general mechanism for
changing the different programmable parts in the EIB-Device. For each part an
automation or Load State Machine is defined which controls the load process.

The following state transition diagram is valid for all Load State Machines.

Start
Loading

Segment

LoadCompleted

Unload

Error
condition

Unload

Unload

UnloadCompleted

Start
Loading

Unloaded

Loading

Loaded

UnloadingError

 Figure 73: Load-/State Machine

Each programmable part has a read-only status property which allows to read the load
status. The load status is stored in non-volatile memory (EEPROM), because it must be
preserved also on power fail.

The load status ‘Unloaded’ not only means that no valid data are in the EIB-Device. But
it means also that all allocated resources (i.e. memory) are released.

The most critical transition is ‘LoadCompleted’, because during this transition the
checksums are calculated and the data are declared as valid. The tool is responsible to
initiate this transition only if it is safe. In the case of any uncertainties the complete load,
starting with unload, should be repeated.

Page 88
prEN ### 1997

The load states (data reading from load / control-property) are encoded as follows.

Load Status Value Remark
Unloaded 0 no data loaded
Loaded 1 data loaded
Loading 2 load process is active
Error 3 error in data detected

Figure 74: Load State Reading

All programmable parts have a Load/Control property for controlling the associated
Load State Machine. All programmable parts are independent. Nevertheless it is
recommended to program only one programmable part at a time.

The encoding of the different record types (data writing to load / control-property) is as
follows.

Load Control Value Remark
No Operation 0 nothing
Start Load 1 start load process
Load
Complete

2 end load process

Allocation /
Information

3 memory allocation /
Taskinformation

Unload 4 Unload the part

Figure 75: Load State Writing

Page 89
prEN ### 1997

Before any tool can write data to a EIB-Device it must allocate the required memory
block. The complete download of a loadable part is done in the following way:

start loading

Segment Allocation /
Information

load complete

Load Data into Memory
Block

unload

 Figure 76: Load procedure

18.2.2.1 Run State Machine of the Executable Parts
Some of the described loadable parts are executable i.e. the application program. Even if
an executable part is loaded correctly, it is not guaranteed that the program is really
running. There are various reasons for this. For example the required application module
is not connected or the application program has terminated due to an internal error.

The possible states and state changes of an executable part are defined by the run state
machine.

Below the state transition diagram for the application program is drawn.

Page 90
prEN ### 1997

Restart and
Program Loaded

Stop

Reset

Restart

Terminate

Restart,
Run Conditions

not fulfilled

Run Conditions
fulfilled

Program loaded

Halted

Running Ready

Terminated

Figure 77: Run-/State Machine

Remark: Even if not shown explicitly, ‘Stop” always leads to state ‘Halted’.

After a reset the run state machine always starts in the ‘Halted’ state. Then the system
automatically makes the transition to the ‘Ready’ state provided the load state machine
of the application program object is in the ‘Loaded’ state. The automatic transition is
made only at start-up. I.e. if the run state machine is manually stopped it does not restart
automatically.

The transitions between the ‘Ready’ and the ‘Running’ states are always made
automatically by the system depending on the run conditions.

The states of the run state machine (data reading from Run control-property) are
encoded as follows.

State Value Remarks
Halted 0 the program is halted
Running 1 the program is running
Ready 2 the program is ready, but not yet running
Terminated 3 the program is terminated

Figure 78: Run State Reading

For the run state machine of the application program a run control property exists in the
application program object.

The application program can be started and stopped for diagnostic purposes (if the run
conditions are fulfilled).

The data for the run control (data writing to Runcontrol-property) are encoded as
follows.

Page 91
prEN ### 1997

Control Value Remarks
Ready 0 no operation
Restart 1 request to restart the program
Stop 2 request to stop the program

Figure 79: Run State Writing

18.3 EIB-Objects

EIB-Objects are accesed via property services on a one-to-one connection-less or
connection oriented communication relationships. Each object in an EIB end device is
addressed with an object_index. The object_index is unique within the EIB end device.
Each property of an object is addressed with a property_id. The property_id is unique
for the object. For the description read a property is may be addressed by the property
index. Each object consits at least the property Objecttype.

If the maximum number of elements of the Objecttype property greater than 1 the whole
object is an array and each property of the object must have at least the number of
elements of the Objecttype property.

An EIB-Object has the following structure:

object_index (unsigned8) object

Property Index (unsigned8) property

property descript ion

proper ty_ id (uns igned8) = PID_OBJ_TYPE
type (unsigned8)

max_no_of_elem (uns igned12 + 4b i t exponent)

access (uns igned8)

property value

array(0)=no. of elements (unsigned 16 / 32)

array(1..max_no_of_e lem)=va lue

...
Property Index (unsigned8) property

property descript ion

property_id (unsigned8)
type (unsigned8)

max_no_of_elem (uns igned12 + 4b i t exponent)

access (uns igned8)

property value

array(0)=no. of elements (unsigned 16 / 32)

array(1..max_no_of_e lem)=va lue

...
Property Index (unsigned8) property

property descript ion

property_id (unsigned8)
type (unsigned8)

max_no_of_elem (uns igned12 + 4b i t exponent)

access (uns igned8)

property value

array(0)=no. of elements (unsigned 16 / 32)

array(1..max_no_of_e lem)=va lue

Figure 80: Object Structure

Every object consists of a number of properties. Every property consists of a property
description and a property value. The property description consists of a property_id, a
property_index, a type, max_no_of_elem and accessrights. The type describes the data
type of the property.

Page 92
prEN ### 1997

The value of a property is an array with array index 1.. max_no_of_elem. The maximum
number of elements of the array is defined in max_no_of_elem of the property
description, the value for max_no_of_elem is a unsigned 12 bit value with a 4 bit binary
exponet without sign. The array element ´0´ contains the current number
(unsigned16/32) of a valid array elements. The array can be reset to no elements by
writing zero on element ´0´. The array is automatically extended if an element is written
beyond the currently last element, but within the maximum allowed number of entries.
The attribute access in the property description indicates the necessary access level to
read or write to the property value.

The property with ID 1 and index 0 is the description of the object itself. This property
is mandatory for every object.

To address a property of a remote device the local device must know the Physical
Address, the Objectindex and the Property ID of the remote device. This information is
may be only an index to the property PID_EIB_OBJ_ASSO of the EIB-Object
association object described in this chapter.

18.3.1 Data types of Properties

The following property types are defined for EIB-Objects.

Property Data Type Type Code Type-Length (dec)

PT_CONTROL 00h 1 Read /10 Write

PT_CHAR 01h 1

PT_UNSIGNED_CHAR 02h 1

PT_INT 03h 2

PT_UNSIGNED_INT 04h 2

PT_EIB_FLOAT 05h 2

PT_DATE 06h 3

PT_TIME 07h 3

PT_LONG 08h 4

PT_UNSIGNED_LONG 09h 4

PT_FLOAT 0Ah 4

PT_DOUBLE 0Bh 8

PT_CHAR_BLOCK 0Ch 10

PT_POLL_GROUP_SETTINGS 0Dh 3

PT_SHORT_CHAR_BLOCK 0Eh 5

PT_GENERIC_01 11h 1

PT_GENERIC_02 12h 2

PT_GENERIC_03 13h 3

PT_GENERIC_04 14h 4

PT_GENERIC_05 15h 5

PT_GENERIC_06 16h 6

PT_GENERIC_07 17h 7

PT_GENERIC_08 18h 8

PT_GENERIC_09 19h 9

PT_GENERIC_10 1ah 10

Figure 81: Data Types of Properties

Page 93
prEN ### 1997

18.3.2 Property-Identifier

The following property Ids are defined for the EIB.

Property-Name Object-Type property_id(dec)

Reserved 0

PID_OBJECT_TYPE 1

PID_OBJECT_NAME 2

PID_SEMAPHOR 3

PID_GROUP_OBJECT_REFERENCE 4

PID_LOAD_STATE_CONTROL 5

PID_RUN_STATE_CONTROL 6

PID_TABLE_REFERENCE 7

PID_SERVICE_CONTROL 8

PID_FIRMWARE_REVISION 9

PID_SERVICES_SUPPORTED 10

PID_SERIAL_NUMBER 11

PID_MANUFACTURER_ID 12

PID_PROGRAM_VERSION 13

PID_DEVICE_CONTROL 14

PID_ORDER_INFO 15

PID_PEI_TYPE 16

PID_PORT_CONFIGURATION 17

PID_POLL_GROUP_SETTINGS 18

PID_MANUFACTURE_DATA 19

PID_ENABLE 20

PID_DESCRIPTION 21

PID_FILE 22

Reserved for global Property Ids -50

PID_POLLING_STATE 10 51

PID_SLAVE_ADDR 10 52

PID_POLL_CYCLE 10 53

PID_FILE_SIZE 11 51

PID_MOD_DATE 11 52

PID_MOD_TIME 11 53

PID_FILE_FLAGS 11 54

Reserved for object type specific property ids -200

Reserved for application specific property ids 200-255

Figure 82: Codes for Property Ids

Page 94
prEN ### 1997

PID_OBJECT_TYPE This property describes the type of the Object. See Table for Object
types

Objecttypes Type_Id (dec)

Device Object 0

Addresstable Object 1

Associationtable Object 2

Applicationprogram Object 3

Interfaceprogram Object 4

EIB-Object-Associationtable Object 5

Router-FilterTable Object 6

...

Pollingmaster 10

File Object 11

...

Analog-Input 100

Analog-Output 101

Analog-Value 102

Binary-Input 103

Binary-Output 104

Binary-Value 105

Counter 106

Loop 107

Multistate-Input 108

Multistate-Output 109

. ...

Reserved for global Object types -50000

Reserved for application specific Objecttypes 50001-65535

Figure 83: Codes for Object types

PID_OBJECT_NAME
This property includes the Name of the Object.

PID_SEMAPHOR The semaphore property is used to lock an Object

PID_GROUP_OBJECT_REFERENCE
The Groupobjectreference is a reference to an Group Object

PID_LOAD_STATE_CONTROL
This property is used for Load/State machines.

PID_RUN_STATE_CONTROL
This Property is used for Run/State machines.

PID_TABLE_REFERENCE
This property includes an absolute pointer to a table.

PID_SERVICE_CONTROL
The service control property is a permanent Controlfield for the
Device.

Page 95
prEN ### 1997

PID_FIRMWARE_REVISION
This property includes a firmware revision of the device.

PID_SERVICES_SUPPORTED
This property is a list of supported services.

PID_SERIAL_NUMBER
This property includes a unique serialnumber of the device.

PID_MANUFACTURER_ID
This is a ID-Number of the manufacturer.

PID_PROGRAM_VERSION
This property includes the version of an Applicationprogram.

PID_DEVICE_CONTROL
This property includes a temporary Controlfield for the Device.

PID_ORDER_INFO This property includes the Manufacture Orderinformation.

PID_PEI_TYPE This property includes either the detected or the expected type of the
physical external interface.

PID_PORT_CONFIGURATION
This property includes the configuration of an I/O-Port.

PID_POLL_GROUP_SETTINGS
This property includes the Fastpolling Address of the device.

PID_MANUFACTURE_DATA
This property is reserved for Manufacture specific data.

PID_ENABLE This property is to Enable / Disable some thing.

PID_DESCRIPTION This property includes the description of the Object.

PID_FILE The file property is used for read and write operations from or to
the file.

For Objecttype Pollingmaster

PID_POLLING_STATE This property includes the state of the Polling slaves

PID_SLAVE_ADDR This property includes the address of the polling
slaves

PID_POLL_CYCLE This property is the cycletime for the Pollingmaster

For Objecttype File

PID_FILE_SIZE Size of the file

PID_MOD_DATE File modification date

PID_MOD_TIME File modification time

Page 96
prEN ### 1997

PID_FILE_FLAGS Define attributes of files.

Bitnr Flags
0 Read enable
1 Write enable
2 Archive
3
4
5
6
7

Figure 84: File Flags

18.3.3 Standard EIB Objects and Properties

In this Chapter Standard EIB-Objects are defined. Each of the defined Objects can have
additional optional properties but must have all mandatory properties. When
implemented, the code and type of a property, shall comply with the coding listed in the
following tables.

18.3.3.1 Device Object
The Device Object includes information about the device.

Property Name Property ID Type Optional /
Mandatory/
Writable

Object Type PID_OBJECT_TYPE PT_UNSIGNED_INT M Device Object 0 dec

Object Name PID_OBJECT_NAME PT_UNSIGNED_CHAR[] O Name of the device
Device Control PID_DEVICE_CONTROL PT_UNSIGNED_CHAR O Temporary Controlfield for the Device
Service Control PID_SERVICE_CONTROL PT_UNSIGNED_INT O Permanent Controlfield for the Device
Firmware Revision PID_FIRMWARE_REVISION PT_UNSIGNED_CHAR M Revisionnumber of the Firmware
Serial Number PID_SERIAL_NUMBER PT_UNSIGNED_CHAR O Serialnumber
Manufacturer ID PID_MANUFACTURER_ID PT_UNSIGNED_INT M See Appendix A
OrderInfo PID_ORDER_INFO PT_CHAR_BLOCK O Manufacturespecific Order ID
PEI-Type PID_PEI_TYPE PT_UNSIGNED_CHAR O Actual connected PEI-TYPE
pollgroup settings PID_POLL_GROUP_ SETTINGS PT_POLL_GROUP_ SETTINGS O 2 byte Polling Group 1Byte

Slotnumber
PortAddr PID_PORTADDR PT_UNSIGNED_CHAR O Direction bits for Port A
Description PID_DESCRIPTION PT_UNSIGNED_CHAR[] O Description of the device
...

Figure 85: Device Object

Page 97
prEN ### 1997

18.3.3.2 Addresstable Object
The Addresstable object includes the physical address and the group addresses of the
device. It provides the management operations for downloading.

Property Name Property ID Type Optional /
Mandatory/
Writable

Object Type PID_OBJECT_TYPE PT_UNSIGNED_INT M Addressable Object 1 dec

Object Name PID_OBJECT_NAME PT_UNSIGNED_CHAR[] O Name of the Addresstable
Load Control PID_LOAD_STATE_CONTROL PT_CONTROL M for further Information see

Load/Statemachines
Addresstable
Pointer

PID_TABLE_REFERENCE PT_UNSIGNED_INT O Pointer to Addresstable

File PID_FILE PT_UNSIGNED_CHAR O Property for downloading
..

Figure 86: Addresstable Object

18.3.3.3 Associationtable Object
The association table object is to connect Groupobjects to group addresses. It provides
the management operations for downloading.

Property Name Property ID Type Optional /
Mandatory/
Writable

Object Type PID_OBJECT_TYPE PT_UNSIGNED_INT M Associationtable Object 2 dec

Object Name PID_OBJECT_NAME PT_UNSIGNED_CHAR[] O Name of the Associationtable
Load Control PID_LOAD_STATE_CONTROL PT_CONTROL M for further Information see

Load/Statemachines
Associationtable
Pointer

PID_TABLE_REFERENCE PT_UNSIGNED_INT O Pointer to Associationtable

File PID_FILE PT_UNSIGNED_CHAR O Property for downloading
..

Figure 87: Associationtable Object

18.3.3.4 Applicationprogram Object
The application program object contains global information about the internal user
application program. It provides management operations for the internal user application
program.

Property Name Property ID Type Optional /
Mandatory/

Writable
Object Type PID_OBJECT_TYPE PT_UNSIGNED_INT M Application Object 3 dec

Object Name PID_OBJECT_NAME PT_UNSIGNED_CHAR[] O Name of the Applicationprogram
Load Control PID_LOAD_STATE_CONTROL PT_CONTROL M for further Information see

Load/Statemachines
Run Control PID_TABLE_REFERENCE PT_UNSIGNED_INT W for further Information see

Run/Statemachines
PEI-Type
Required

PID_PEI_TYPE PT_UNSIGNED_CHAR O required PEI-Type for User

Application
Version

PID_APPLICATION_VER PT_SMALL_CHAR_BLOCK M Version of Application Program

Groupobject
Tablereference

PID_TABLE_REFERENCE PT_UNSIGNED_INT O Pointer to Communication Object Table

File PID_FILE PT_UNSIGNED_CHAR O Property for downloading
..

Figure 88: Applicationprogram Object

Page 98
prEN ### 1997

18.3.3.5 Interfaceprogram Object
The Interfaceprogram specifies a special type of application program which manage the
physical external interface.

Property Name Property ID Type Optional /
Mandatory/

Writable
Object Type PID_OBJECT_TYPE PT_UNSIGNED_INT M Interfaceprogram Object 4 dec

Object Name PID_OBJECT_NAME PT_UNSIGNED_CHAR[] O Name of the Interfaceprogram
Load Control PID_LOAD_STATE_CONTROL PT_CONTROL M for further Information see

Load/Statemachines
Run Control PID_TABLE_REFERENCE PT_UNSIGNED_INT W for further Information see

Run/Statemachines
PEI-Type
Required

PID_PEI_TYPE PT_UNSIGNED_CHAR O required PEI-Type for User

Program
Version

PID_APPLICATION_VER PT_SMALL_CHAR_BLOCK M Version of Interface Program

File PID_FILE PT_UNSIGNED_CHAR O Property for downloading
..

Figure 89: Interfaceprogram Object

18.3.3.6 EIB-Object Associationtable Object
The EIB-object Associationtable is for the definition of slave objects in a device.

Property Name Property ID Type Optional /
Mandatory/
Writable

Object Type PID_OBJECT_TYPE PT_UNSIGNED_INT M EIB-ObjectAssociation Object 5 dec

Object Name PID_OBJECT_NAME PT_UNSIGNED_CHAR[] O Name of the Object
Load Control PID_LOAD_STATE_CONTROL PT_CONTROL M for further Information see

Load/Statemachines
Associationtable
Pointer

PID_TABLE_REFERENCE PT_UNSIGNED_INT O Pointer to Associationtable

EIB-Object
Association

PID_EIB_OBJ_ASSO PT_UNSIGNED_LONG O Association to an Slave EIB-Object

File PID_FILE PT_UNSIGNED_CHAR O Property for downloading
..

Figure 90: EIB-Object Associationtable Object

18.3.3.7 Router Filtertable Object
The Router Filtertable object includes information about the Filtertable for a Router.

Property Name Property ID Type Optional /
Mandatory/
Writable

Object Type PID_OBJECT_TYPE PT_UNSIGNED_INT M Router Filtertable Object 6 dec

Object Name PID_OBJECT_NAME PT_UNSIGNED_CHAR[] O Name of the Object
Load Control PID_LOAD_STATE_CONTROL PT_CONTROL M for further Information see

Load/Statemachines
Filtertable Pointer PID_TABLE_REFERENCE PT_UNSIGNED_INT O Pointer to Router
File PID_FILE PT_UNSIGNED_CHAR O Property for downloading
..

Figure 91: EIB-Object Associationtable Object

Page 99
prEN ### 1997

18.3.3.8 Polling Master EIB Object
The polling master object is an object to describe a master of a specified polling group.

Property Name Property ID Type Optional /
Mandatory/

Writable
Object Type PID_OBJECT_TYPE PT_UNSIGNED_INT M Polling Master Object 10 dec

Object Name PID_OBJECT_NAME PT_UNSIGNED_CHAR[] O Name of the Object
Polling Group PID_POLL_GROUP_ SETTINGS PT_POLL_GROUP_ SETTINGS W contains the address of the polling

group and the current number of
polling slaves (<= pollSlaves)

Enable PID_ENABLE PT_UNSIGNED_CHAR W Enables the polling, 0: disable, 1:
enable

Polling Status PID_POLLING_STATE 51 dec PT_UNSIGNED_CHAR
[pollSlaves]

M Values received by the polling
mechanism

Slave
Addresses

PID_SLAVE_ADDR 52 dec PT_UNSIGNED_INT
[pollSlaves]

W Contains the physical addresses of the
slaves of this polling object.

Polling Timer PID_POLL_CYCLE 53 dec PT_UNSIGNED_CHAR M the time between 2 polling cycles
..

Figure 92: Polling Master Object

18.3.3.9 File Object
The File object is an object to describe data files on a Device.

Property Name Property ID Type Optional /
Mandatory

Object Type PID_OBJECT_TYPE PT_UNSIGNED_INT M File Object 11 dec

Object Name PID_OBJECT_NAME PT_UNSIGNED_CHAR[] O Name of the Object
File PID_FILE PT_UNSIGNED_CHAR M Read/write file
Description PID_DESCRIPTION PT_UNSIGNED_CHAR[] O
File_Size PID_FILE_SIZE 51dec PT_UNSIGNED_LONG O
Modification_
Date

PID_MOD_DATE 52 dec PT_DATE O

Modification_
Time

PID_MOD_TIME 53 dec PT_TIME O

FileFlags PID_FILE_FLAGS 54 dec PT_UNSIGNED_CHAR O Read/write Enable
...

Figure 93: File Object

Page 100
prEN ### 1997

18.3.3.10 Analog Input/Output/Value-Object
The Analog object type defines a standardised object whose properties represents the
externally visible characteristics of an analog input/output/value.

A „analog input/output“ is a physical device or hardware input/output. A „analog value“
is a control system parameter residing in the memory of the Device.

Property Name Property ID Type Optional /
Mandatory/

Writable
Object Type PID_OBJECT_TYPE PT_UNSIGNED_INT M Analog Input 100 dec

Analog Output 101 dec

Analog Value 102 dec

Object Name PID_OBJECT_NAME PT_UNSIGNED_CHAR[] O Name of the Object
Description PID_DESCRIPTION PT_UNSIGNED_CHAR[] O Description of the Object
Present Value PID_PRESENT_VAL PT_UNSIGNED_CHAR

PT_UNSIGNED_INT
PT_UNSIGNED_LONG
PT_SIGNED_CHAR
PT_SIGNED_INT
PT_SIGNED_LONG
PT_FLOAT
PT_DOUBLE
PT_EIB_FLOAT

M / W Present Analog Value of the Object

Status PID_STATUS PT_UNSIGNED_CHAR O { IN_ALARM, FAULT,OVERRIDDEN,
OUT_OF_SERVICE }

Units PID_UNITS PT_UNSIGNED_CHAR O EngenieeringUnits
Priority Array PID_PRIORITY_ARRAY same as Present Value O
Relinquish
Default

PID_DEFAULT same as Present Value O

Priority Value PID_PRIORITY_VALUE PT_UNSIGNED_CHAR[] O
Commanded
Value

PID_COMM_VALUE same as Present Value O

Event/Alarm
Control

PID_EVT_ALARM_CTR PT_UNSIGNED_CHAR O

High Alarm
Limit

PID_HIGH_ALARM_LIMIT same as Present Value O

High Warning
Limit

PID_HIGH_WARNING_LIMIT same as Present Value O

Low Alarm
Limit

PID_LOW_ALARM_LIMIT same as Present Value O

Low Warning
Limit

PID_LOW_WARNING_LIMIT same as Present Value O

..

Figure 94: Analog Input/Output/Value Object

Page 101
prEN ### 1997

18.3.3.11 Binary Input/Output/Value Object
The Binary object type defines a standardised object whose properties represent the
externally visible characteristics of a binary input/output/value.

A „binary input/output“ is a physical device or hardware input/output that can be in only
one of two distinct states.

A „binary value“ is a control system parameter residing in the memory of the Device.
This parameter may assume only one of two distinct states.

In this description, those states are referred to as ACTIVE and INACTIVE

Property Name Property ID Type Optional /
Mandatory/

Writable
Object Type PID_OBJECT_TYPE PT_UNSIGNED_INT M Binary Input 103 dec

Binary Output 104 dec

Binary Value 105 dec

Object Name PID_OBJECT_NAME PT_UNSIGNED_CHAR[] O Name of the Object
Description PID_DESCRIPTION PT_UNSIGNED_CHAR[] O
Present Value PID_PRESENT_VAL PT_UNSIGNED_CHAR M / W
Status PID_STATUS PT_UNSIGNED_CHAR O
Priority Array PID_PRIORITY_ARRAY PT_UNSIGNED_CHAR O
Relinquish
Default

PID_DEFAULT PT_UNSIGNED_CHAR O

Priority Value PID_PRIORITY_VALUE PT_UNSIGNED_CHAR[] O
Commanded
Value...

PID_COMM_VALUE PT_UNSIGNED_CHAR O

Event/Alarm
Control

PID_EVT_ALARM_CTR PT_UNSIGNED_CHAR O

Polarity PID_POLARITY PT_UNSIGNED_CHAR O
Total Run Time PID_TOTAL_RUN_TIME PT_UNSIGNED_LONG O
..

Figure 95: Binary Input/Output/Value Object

Page 102
prEN ### 1997

18.3.3.12 Counter Object
The Counter Object is used for hardware counting devices and for counting values.

Property Name Property ID Type Optional /
Mandatory

Object Type PID_OBJECT_TYPE PT_UNSIGNED_INT M Counter Object 106 dec

Object Name PID_OBJECT_NAME PT_UNSIGNED_CHAR[] O Name of the Object
Description PID_DESCRIPTION PT_UNSIGNED_CHAR[] O
Present Value PID_PRESENT_VAL PT_UNSIGNED_CHAR

PT_UNSIGNED_INT
PT_UNSIGNED_LONG
PT_SIGNED_CHAR
PT_SIGNED_INT
PT_SIGNED_LONG

M

Status PID_STATUS PT_UNSIGNED_CHAR O
Priority Value PID_PRIORITY_VALUE PT_UNSIGNED_CHAR[] O priority needed for reseting the counter
Units PID_UNITS PT_UNSIGNED_CHAR O EngenieeringUnits
Event/Alarm
Control

PID_EVT_ALARM-CTR PT_UNSIGNED_CHAR

Interval_
Counter

PID_INT_CNT PT_UNSIGNED_CHAR
PT_UNSIGNED_INT
PT_UNSIGNED_LONG
PT_SIGNED_CHAR
PT_SIGNED_INT
PT_SIGNED_LONG

Interval Limit PID_INT_LIMIT PT_UNSIGNED_CHAR
PT_UNSIGNED_INT
PT_UNSIGNED_LONG
PT_SIGNED_CHAR
PT_SIGNED_INT
PT_SIGNED_LONG

Interval Period PID_INT_PERIOD PT_UNSIGNED_CHAR
PT_UNSIGNED_INT
PT_UNSIGNED_LONG

COV Limit PID_COV_LIMIT
...

Figure 96: Counter Object

Page 103
prEN ### 1997

18.3.3.13 Loop Object
The Loop object type defines a standardised object whose properties represents the
externally visible characteristics of any form of feedback control loop. Flexibility is
achieved by providing three independent gain constants with no assumed values for
units. The appropriate gain units are determined by the details of the control algorithm,
which is a local matter.

Property Name Property ID Type Optional /
Mandatory

Object Type PID_OBJECT_TYPE PT_UNSIGNED_INT M Loop Object 107 dec

Object Name PID_OBJECT_NAME PT_UNSIGNED_CHAR[] O Name of the Object
Description PID_DESCRIPTION PT_UNSIGNED_CHAR[] O
Present Value PID_PRESENT_VAL PT_UNSIGNED_CHAR

PT_UNSIGNED_INT
PT_UNSIGNED_LONG
PT_SIGNED_CHAR
PT_SIGNED_INT
PT_SIGNED_LONG
PT_FLOAT
PT_DOUBLE
PT_EIB_FLOAT

M / W Output value of the loop algorithm

Status PID_STATUS PT_UNSIGNED_CHAR O
Event/Alarm
Control

PID_EVT_ALARM-CTR PT_UNSIGNED_CHAR O

Output_Units PID_UNITS PT_UNSIGNED_CHAR O EngenieeringUnits of present value
Polarity PID_POLARITY PT_UNSIGNED_CHAR O
Present Value
Reference

PID_PRES_VAL_REF PT_UNSIGNED_LONG O

Update Interval PID_UPDATE_INTERVAL PT_UNSIGNED_INT O
Controlled_Vari
able_Referenc
e

PID_CONTROLLED_VARIAB
LE_REF

PT_UNSIGNED_LONG O

Controlled_Vari
able_Value

PID_CONTROLLED_VARIAB
LE_VALUE

PT_UNSIGNED_CHAR
PT_UNSIGNED_INT
PT_UNSIGNED_LONG
PT_SIGNED_CHAR
PT_SIGNED_INT
PT_SIGNED_LONG
PT_FLOAT
PT_DOUBLE
PT_EIB_FLOAT

O

Controlled_Vari
able_Units

PID_CONTROLLED_VARIAB
LE_UNITS

O EngenieeringUnits

Setpoint_Refer
ence

PID_SETPOINT_REF PT_UNSIGNED_LONG O

Setpoint PID_SETPOINT same as
Controlled_Variable_Value

O

Priority_For_W
riting

PID_PRIORITY_FOR_WRITI
NG

Unsigned O

Proportional
Constant..

PID_P_CONST O

Integral
Constant

PID_I_CONST O

Derivative
Constant

PID_D_CONST O

..

Figure 97: Loop Object

Page 104
prEN ### 1997

18.3.3.14 Multi-state Input / OutputObject
The Multistate Object describes a digital hardware input or output device or a value with
more than two states.

Property Name Property ID Type Optional /
Mandatory

Object Type PID_OBJECT_TYPE PT_UNSIGNED_INT M Multi-state Input 108 dec

Multi-state Output 109 dec

Object Name PID_OBJECT_NAME PT_UNSIGNED_CHAR[] O Name of the Object
Description PID_DESCRIPTION PT_UNSIGNED_CHAR[] O
Present Value PID_PRESENT_VAL 100 dec PT_UNSIGNED_CHAR M / W
Status PID_STATUS 101 dec PT_UNSIGNED_CHAR O
Priority Array PID_PRIORITY 107 dec PT_UNSIGNED_CHAR O
Relinquish
Default

PID_DEFAULT 108 dec PT_UNSIGNED_CHAR O

Priority Value PID_PRIORITY_VALUE 107 PT_UNSIGNED_CHAR[] O
Event/Alarm
Control

PID_EVT_ALARM_CTR PT_UNSIGNED_CHAR O

Commanded
Value...

PID_COMM_VALUE

Number of States PID_STATE_COUNT 110 dec PT_UNSIGNED_CHAR O
Total
Runtime...

PID_TOTAL_RUNTIME O

...

Figure 98: Multistate Input / Output Object

18.3.3.15 Object type specific Properties for Objectstypes 100-150
The following properties are defined for Objectstypes 100-150

Property-Name property_id(dec)
PID_PRESENT_VAL 101
PID_STATUS 102
PID_UNITS 103
PID_PRIORITY_ARRAY 104
PID_DEFAULT 105
PID_PRIORITY_VALUE 106
PID_COMM_VALUE 107
PID_EVT_ALARM_CTR 108
PID_HIGH_ALARM_LIMIT 109
PID_HIGH_WARNING_LIMIT 110
PID_LOW_ALARM_LIMIT 111
PID_LOW_WARNING_LIMIT 112
PID_POLARITY 113
PID_TOTAL_RUNTIME 114
PID_PRES_VAL_REF 115
PID_UPDATE_INTERVALL 116
PID_CONTROLED_VAR 117
PID_CONTROLED_VAR_REF 118
PID_CONTROLED_VAR_UNITS 119
PID_SETPOINT 120
PID_SETPOINT_REF 121
PID_PRIO_FOR_WRITING 122
PID_PROPORTIONAL_CONST 123
PID_INTEGRALL_CONST 124
PID_DERIVATE_CONST 125
PID_STATE_COUNT 126
PID_INT_CNT 127
PID_INT_LIMIT 128
PID_INT_PERIOD 129
PID_COV_LIMIT 130

Figure 99: Property Types for Objecttypes 100-150

Page 105
prEN ### 1997

PID_PRESENT_VAL The Present_Value contains the actual value of the object.

PID_STATUS The Status Property is devided into two parts, the status part and the
status specific part. The status part are the most significant 4 bits and
the specific the least significant 4 bits. The Status represent the actual
status of the Present_Value.

Status type
Common (Bit 4-7)
Bit 7 in-alarm
Bit 6 fault
Bit 5 overridden
Bit 4 maintenance / out-of-service
-> in-alarm (Bit 0-1) 0 warn. high

1 alarm high / overflow
2 warn low
3 alarm low

-> fault (Bit 2-3) 0 undefined
1 out of range
2 open-loop
3 shorted-loop

Figure 100: Status Types

PID_UINTS This property indicates the engineering units of the Present value
property of this object.

PID_HIGH_ALARM_LIMIT, PID_HIGH_WARNING_LIMIT,
PID_LOW_ALARM_LIMIT PID_LOW_WARNING_LIMIT

The Limit properties are analog values with the same type as the
corresponding Present_Value of the Analog Object. If an Alarm_Limit
is reached the Status bit "in-alarm" and the corresponding alarmstate is
set.

PID_PRIORITY_ARRAY/VALUE
The properties Priority_Array and Priority_Value can not exist in one
Object. The property Priority_Array is an array of prioritised values
and the property Priority_Value stores the last received priority.

PID_DEFAULT This property is the default value if no priority is present.

PID_COMM_VALUE The Commanded_Value is a copy of the last Present_Value sent as a
command (write service) to the object.

Page 106
prEN ### 1997

PID_EVT_ALARM_CTRL
This property is to enable and disable the automatic generation of
events / alarms.

Bitnr
0 to warn. high
1 to alarm high / overflow
2 to warn low
3 to alarm low
4 to normal
5 to fault
6
7

Figure 101: Event/Alarm Control

PID_POLARITY This property indicates the relationship between the physical state of
the Input and the logical state represented by Present_Value property.

Present_Value Polarity Physical state
INACTIVE NORMAL INACTIVE
ACTIVE NORMAL ACTIVE

INACTIVE REVERSE ACTIVE
ACTIVE REVERSE INACTIVE

Figure 102: Polarity

PID_TOTAL_RUNTIME
The Total Run Time property represents the accumulated number of
seconds that the present value property has had the value ACTIVE.

PID_PRES_VAL_REF
This property is of type PT_UNSIGNED_LONG. The output
(Present_Value) of an object is written to the object and property
designated by the Present_Value_Reference.

PID_UPDATE_INTERVAL
This property defines the time to scan the inputs and to compute the
new Y in a Loop-Object.

PID_CONTROLED_VAR
This property is the value of the property defines in
Controlled_Variable_Reference. This control loop compares the
Controlled_Variable_Value with the Setpoint to calculate the error.

PID_CONTROLED_VAR_REF
This property is of type PT_UNSIGNED_LONG. The
Controlled_Variable_Reference identifies the property to set the
Controlled_Variable_Value property of the Loop object. It is normally
the Present_Value of an analog input object used for measuring a
process variable, temperature for example, but it could also be another
object, such as an Analog Value, which calculates a minimum or
maximum of a group of Analog Inputs.

PID_CONTROLED_VAR_UNITS
This property indicates the engineering units of the
Controlled_Variable_Value property of this object.

Page 107
prEN ### 1997

PID_SETPOINT This property is the value of the loop Setpoint or of the property of the
object referenced by the Setpoint_Reference defined above, expressed
in units of the Controlled_Variable_Units property.

PID_SETPOINT_REF
This property, of type PT_UNSIGNED_LONG, identifies the property
of another object contains the Setpoint value used for this Loop object
and specifies that property.

PID_PRIO_FOR_WRITING
Loop objects may be used to control the commandable property of an
object. This property, of type Unsigned, provides a priority to be used
by the command prioritisation mechanism. identifies the particular
priority slot in the Priority_Array of the
Controlled_Variable_Reference that is controlled by this loop.

PID_PROPROTIONAL_CONSTANT
The Proportinal_Constant property is needed for the loop algorithm.

PID_INTEGRAL_CONSTANT
The Integral_Constant property is a value that is needed for the loop
algorithm.

PID_DERIVATIVE_CONSTANT
The Derivative_Constant property is a value that that is needed for the
loop algorithm.

PID_STATE_COUNT
The state count property include the number of states for a multistae
object.

PID_INTERVALL_COUNTER
The Interval_Counter property works on the same base then the
prensent_value property of an counter object.

PID_INTERVALL_LIMIT/PERIOD
The Interval_Limit property is a difference between a start and a
maximum value that can be reached in Interval period. If the
Present_Value becomes greater than this maximum value the Status
bit "alarm" is set.

PID_COV_INCREMENT
The COV_Increment property defines when a new present_value is
sent by the Object.

Page 108
prEN ### 1997

THIS PAGE LEFT BLANK INTENTIONALLY

Page 109
prEN ### 1997

Data Communication for HVAC Applications

Automation Net EIB:

Annex A: Interface to BACnet

CEN
European Committe for Standardization

Comité Européen de Normalisation
Europäisches Komitee für Normung

Central Secretariat: rue de Stassart 36, B - 1050 Brussels
__

© 1997 Copyright reserved for CEN members Ref. No EN *** 1997 E

Page 110
prEN ### 1997

1 Introduction

This annex describes the relationship between BACnet objects at on side and EIB
objects and Group objects on the other side.

Figure 103: Relationship BACnet objects , EIB objects and Group objects

2 References

ISO/IEC 8802-2 Information technology -
Telecommunications and information exchange between systems -
Local and metropolitan area networks -
Specific requirements

ANSI/ASHRAE 135-1955

A Data Communication Protocol for Building Automation and
Control Networks (BACnet)

EIBA-Handbook for Development Issue 3.0 (Draft)

Interface to BACnet

EIB
Objects

Group
Objects

BACnet
Objects

Page 111
prEN ### 1997

3 Objects and Properties

3.1 Relationship between EIBnet and BACnet Object Types

EIB Object types EIB-Type_Id (dec) BACnet Object types BACnet ID

Device Object 0 Device Object 8

Addresstable Object 1

Associationtable Object 2

Applicationprogram Object 3 Program Object 16

Interface Program 4

EIB-Object-Associationtable-Object 5

Router Filtertable 6

...

Pollingmaster 10

File 11 File 10

...

Analogue-Input 100 Analogue-Input 0

Analogue-Output 101 Analogue-Output 1

Analogue-Value 102 Analogue-Value 2

Binary-Input 103 Binary-Input 3

Binary-Output 104 Binary-Output 4

Binary-Value 105 Binary-Value 5

Counter 106

Loop 107 Loop 12

Multistate-Input 108 Multistate-Input 13

Multistate-Output 109 Multistate-Output 14

Figure 1: Relations between EIB Object types and BACnet Object types

Enumerated values 0-127 are reserved for objects in BACnet. 128-1023 may be used
by other subjects. For instance EIB objects may be enumerated like:
BACnet Object type ID (for user defined Objects) := const + EIB Object type Id (const
>= 128)

Page 112
prEN ### 1997

3.2 Relationship between EIB and BACnet Properties

EIB-Property-IDs EIB-Property_Id(dec)
(Obj-ID)

BACnet-Properties BACnetPropert
y-ID

Reserved 0

PID_OBJECT_TYPE 1 ObjectType 79

PID_OBJECT_NAME 2 Object_Name 77

PID_SEMAPHOR 3

PID_GROUP_OBJECT_REFERENCE 4

PID_LOAD_STATE_CONTROL 5

PID_RUN_STATE_CONTROL 6

PID_TABLE_REFERENCE 7

PID_SERVICE_CONTROL 8

PID_FIRMWARE_REVISION 9

PID_SERVICES_SUPPORTED 10

PID_SERIAL_NUMBER 11

PID_MANUFACTURER_ID 12

PID_PROGRAM_VERSION 13

PID_DEVICE_CONTROL 14

PID_ORDER_INFO 15

PID_PEI_TYPE 16

PID_PORT_CONFIGURATION 17

PID_POLL_GROUP_SETTINGS 18

PID_MANUFACTURE_DATA 19

PID_ENABLE 20

PID_DESCRIPTION 21 Description 28

PID_FILE 22

PID_POLLING_STATE 51 (10)

PID_SLAVE_ADDR 52 (10)

PID_POLL_CYCLE 53 (10)

PID_FILE_SIZE 51 (11) File Size 42

PID_MOD_DATE 52 (11) Modification Date 71

PID_MOD_TIME 53 (11)

PID_FILE_FLAGS 54(11) File Type
Archive

Read only
File Access Method

43
13
99
41

...

Page 113
prEN ### 1997

EIB-Property-IDs EIB-Property_Id(dec)
(Obj-ID)

BACnet-Properties BACnetPropert
y-ID

PID_PRESENT_VAL 101 (100-199) Present _Value 85

PID_STATUS 102(100-199) Status_Flags
Event_State

Out_Of_Service

111
36
81

PID_UNITS 103(100-199) Units 117

PID_PRIORITY_ARRAY 104(100-199) Priority_Array 87

PID_DEFAULT 105(100-199) Relinquish_Default 104

PID_PRIORITY_VALUE 106(100-199) Priority_Array 87

PID_COMM_VALUE 107(100-199)

PID_EVT_ALARM_CTR 108(100-199) Event_Enable
Limit_Enable

35
52

PID_HIGH_ALARM_LIMIT 109(100-199) Max_Pres_Value 65

PID_HIGH_WARNING_LIMIT 110(100-199) High_Limit 45

PID_LOW_ALARM_LIMIT 111(100-199) Min_Pres_Value 35

PID_LOW_WARNING_LIMIT 112(100-199) Low_Limit 59

PID_POLARITY 113(100-199) Polarity 84

PID_TOTAL_RUN_TIME 114(100-199) Elapsed_Aktive_Time 33

PID_PRESENT_VALUE_REFERENCE 115(100-199) Manipulated_Variable_Referenc
e

60

PID_UPDATE_INT 116(100-199) Update Interval 118

PID_CONTROLLED_VARIABLE_VALUE 117(100-199) Controlled_Variable_Value 21

PID_CONTROLLED_VARIABLE_REFERENCE 118(100-199) Controlled_Variable_Reference 19

PID_CONTROLLED_VARIABLE_UNITS 119(100-199) Controlled_Variable_Units 20

PID_SETPOINT 120(100-199) Setpoint 108

PID_SETPOINT_REFERENCE 121(100-199) Setpoint_Reference 109

PID_PRIORITY_FOR_WRITING 122(100-199) Priority_For_Writing 88

PID_P_CONST 123(100-199) Proportional Constant 93

PID_I_CONST 124(100-199) Integral Constant 49

PID_D_CONST 125(100-199) Derived Constant 26

PID_STATE_COUNT 126(100-199) Number_Of_States 74

PID_INT_CNT 127(100-199)

PID_INT_LIMIT 128(100-199)

PID_INT_PERIOD 129(100-199)

PID_COV_LIMIT 130(100-199)

Figure 2: EIB Properties

EIB specific Properties that are not supported by BACnet may use values 512-4194303.
Values 0-511 are reserved for BACnet.

BACnet Property type ID (for user defined Properties) := const + EIB Property type Id

const == 1000

Page 114
prEN ### 1997

3.3 Relationship between EIBnet and BACnet Data Types

EIB Net Data Type BACnet Data Type

PT_CONTROL Unsigned

PT_CHAR INTERGER8

PT_UNSIGNED_CHAR Unsigned

PT_INT INTEGER16

PT_UNSIGNED_INT Unsigned16

PT_EIB_FLOAT Converted to REAL

PT_DATE Converted to Date

PT_TIME Converted to Time

PT_LONG INTEGER32

PT_UNSIGNED_LONG Unsigned32

PT_FLOAT REAL

PT_DOUBLE Double

PT_CHAR_BLOCK CharString[10]

PT_POLL_GROUP_SETTINGS OctetString[3]

PT_SHORT_CHAR_BLOCK CharString[5]

Figure 3

3.4 Interpretation of BACnetObjectIdentifier

::= octetString (size(4))

O c te t 0 O c te t 1 O c te t 2 O c te t 3

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

O
bj

ec
tT

yp
e

as
 s

ho
w

n
in

 T
ab

le
 1

.1

ph
ys

ic
al

 A
dd

re
ss

EI
B-

O
bj

ec
t I

nd
ex

Object Type Identifier

10 bits are reserved for the Object Type . The following 22 bits consists of 16bit
physical EIB-Address and 6bit EIB-Object-Index. EIB-Objects supports 8bit index, so
that two bits are cut to use it as a BACnet -Identifier.

4 Conversion of EIB-Group Objects to BACnet

EIB-Group Objects are covered by the interface depending on the type to analogue or
binary BACnet objects. EIB-Group-Objects are may be also covert in other BACnet-
Objects e.g. as present_value or controlled_variable in a loop object. All properties
which are mandatory in the BACnet are set up by the Interface.

Page 115
prEN ### 1997

5 Conversion of EIB-Objects not existing in BACnet

All special EIB-Objects which are not existing in the BACnet are added to BACnet as
Proprietary Object types. All special EIB-Properties may be added to BACnet as
Proprietary Properties. Possible needed type conversions are done by the interface.

6 Conversion of EIB-Objects to BACnet-Objects

6.1 Analogue Input/Output/Value Object

EIB-Property ID Type
Conversion

Optional / Mandatory/
Writable

EIB BACnet

BACnet Property ID If not existing in EIB

PID_OBJECT_TYPE M Object_Type
PID_OBJECT_NAME O M Object_Name always ” ”
PID_DESCRIPTION O Description
PID_PRESENT_VAL Type M / W Present Value
PID_STATUS Interface O M Status_Flags

Event_State
Out_Of_Service

NORMAL
NORMAL
FALSE

PID_UNITS Table O M Units set by interface
PID_PRIORITY_ARRAY Interface O (M) Priority_Array filled up by Interface
PID_DEFAULT Type O (M) Relinquish_Default always Zero
PID_PRIORITY_VALUE Interface O (M) Priority_Value filled up by Interface
PID_COMM_VALUE O -
PID_EVT_ALARM_CTR Table O Event_Enable

Limit_Enable
set by Interface

PID_HIGH_ALARM_LIMIT Type O Max_Pres_Value
PID_HIGH_WARNING_LIMIT Type O High_Limit
PID_LOW_ALARM_LIMIT Type O Min_Pres_Value
PID_LOW_WARNING_LIMIT Type O Low_Limit

Figure 4: Conversion of the Analogue Object Type to BACnet

6.2 Application Program Object

EIB-Property ID Type
Conversion

Optional / Mandatory/
Writable

EIB BACnet

BACnet Property ID If not existing in EIB

PID_OBJECT_TYPE M Object_Type
PID_OBJECT_NAME O M Object_Name always ” ”
PID_DESCRIPTION O Description
PID_LOAD_STATE_CONTROL Table M Program_State set by Interface
PID_RUN_STATE_CONTROL Table W Program_Request set by Interface
PID_PEI_TYPE O
PID_APPLICATION_VER M
PID_TABLE_REFERENCE O
PID_FILE O

Interface Status NORMAL
Interface Out_Of_Service FALSE

Figure 5 : Conversion of the Program Object Type to BACnet

Page 116
prEN ### 1997

6.3 Binary Input/Output/Value

EIB-Property ID Type
Conversion

Optional / Mandatory/
Writable

EIB BACnet

BACnet Property ID If not existing in EIB

PID_OBJECT_TYPE M Object_Type
PID_OBJECT_NAME O M Object_Name always ” ”
PID_DESCRIPTION O Description
PID_PRESENT_VAL Type M / W Present Value
PID_STATUS Interface O M Status_Flags

Event_State
Out_Of_Service

NORMAL
NORMAL
FALSE

PID_PRIORITY_ARRAY Interface O (M) Priority_Array filled up by Interface
PID_DEFAULT Type O (M) Relinquish_Default always Zero
PID_COMM_VALUE O
PID_EVT_ALARM_CTR Table O Event_Enable

Limit_Enable
set by Interface

PID_POLARITY Interface O M Polarity NORMAL
PID_ELAPSED_ACTIVE_TIM
E

Type
Interface

O Elapsed Active Time
Time Of Active Time
Reset

set by Interface

Figure 6: Conversion of Binary Device Object Type to BACnet

6.4 Counter Object

EIB-Property ID Type
Conversion

Optional / Mandatory/
Writable

EIB BACnet

BACnet Property ID If not existing in EIB

PID_OBJECT_TYPE M Object_Type
PID_OBJECT_NAME O M Object_Name always ” ”
PID_DESCRIPTION O Description
PID_PRESENT_VAL 100 Type M / W Present Value
PID_STATUS Interface O M Status_Flags

Event_State
Out_Of_Service

NORMAL
NORMAL
FALSE

PID_UNITS Table O M Units set by interface
PID_PRIORITY_VALUE Interface O Priority_Value filled up by Interface
PID_EVT_ALARM_CTR Table O Event_Enable

Limit_Enable
set by Interface

PID_INT_CNT O
PID_INT_LIMIT O
PID_INT_PERIOD O
PID_COV_LIMIT O

Figure 7: Conversion of the Counter Object Type to BACnet

Page 117
prEN ### 1997

6.5 Device Object

EIB-Property ID Type Conversion Optional / Mandatory/
Writable

EIB BACnet

BACnet Property ID If not existing in EIB

PID_OBJECT_TYPE M Object_Type
PID_OBJECT_NAME O M Object_Name always ” ”
PID_DEVICE_CONTROL O
PID_SERVICE_CONTROL O
PID_FIRMWARE_REVISION M Firmware_Revision
PID_SERIAL_NUMBER O

Interface M Vendor_Name filled up by Interface
PID_MANUFACTURER_ID M Vendor_Identifier
PID_ORDER_INFO O
PID_PEI_TYPE O
PID_POLL_GROUP_ SETTINGS O
PID_PORTADDR O
PID_DESCRIPTION O Description

Interface M System_Status filled up by Interface
Interface M Model_Name “”
Interface

M
Application_Software
_Version

filled up by Interface

Interface M Protocol_Version filled up by Interface
Interface M Protocol_Conforman

ce_Class
filled up by Interface

Interface M Protocol_Services_S
upported

filled up by Interface

Interface M Protocol_Object_Typ
es_Supported

filled up by Interface

Interface M Object_List filled up by Interface
Interface M Max_APDU_Length_

Accepted
filled up by Interface

Interface M Segmentation_Supp
orted

filled up by Interface

Interface M APDU_Timeout filled up by Interface
Interface M Number_Of_APDU_R

etries
filled up by Interface

Interface M Device_Address_Bin
ding

filled up by Interface

Figure 8: Conversion of the Device Object Type to BACnet

6.6 File Object

EIB-Property ID Type Conversion Optional / Mandatory/
Writable

EIB BACnet

BACnet Property ID If not existing in EIB

PID_OBJECT_TYPE M Object_Type
PID_OBJECT_NAME O M Object_Name always ” ”
PID_FILE M .
PID_DESCRIPTION O Description

Interface M File_Type always ” ”
PID_FILE_SIZE Interface O M File_Size filled up by Interface
PID_MOD_DATE Interface O M Modification_Date filled up by Interface
PID_MOD_TIME O
PID_FILE_FLAGS Table O M Archive

Read_Only
set by Interface

Interface M File_Access_Method RECORD_AND_STREAM_AC
CESS

Figure 9: Conversion of the File Object Type to BACnet

Page 118
prEN ### 1997

6.7 Loop Object

EIB-Property ID Type Conversion Optional / Mandatory/
Writable

EIB BACnet

BACnet Property ID If not existing in EIB

PID_OBJECT_TYPE M Object_Type
PID_OBJECT_NAME O M Object_Name always ” ”
PID_DESCRIPTION O Description
PID_PRESENT_VAL Type M / W Present Value
PID_STATUS Interface O M Status_Flags

Event_State
Out_Of_Service

NORMAL
NORMAL
FALSE

PID_PRIORITY_FOR_WRITIN
G

O Priority_For_Writing

PID_UNITS O M Units filled up by Interface
PID_POLARITY O M Action filled up by Interface

PID_PRESENT_VAL_REFER
ENCE

Interface O M Manipulated_Variabl
e_Reference

filled up by Interface

PID_UPDATE_INTERVAL Interface O M Update Interval filled up by Interface
PID_CONTROLLED_VARIAB
LE_REFERENCE

Interface O M Controlled_Variable_
Refe

filled up by Interface

PID_CONTROLLED_VARIAB
LE_VALUE

Interface O M Controlled_Variable_
Value

filled up by Interface

PID_CONTROLLED_VARIAB
LE_UNITS

Interface O M Controlled_Variable_
Units

filled up by Interface

PID_SETPOINT_REFERENC
E

Interface O M Setpoint_Reference filled up by Interface

PID_SETPOINT Interface O M Setpoint filled up by Interface

PID_EVT_ALARM-CTR Table O Event_Enable
Limit_Enable

set by Interface

PID_P_CONST
Interface

O Proportional Constant
Proportional
Constant Unit

filled up by Interface

PID_I_CONST
Interface

O Integral Constant
Integral Constant
Unit

filled up by Interface

PID_D_CONST
Interface

O Derived Constant
Derived Constant
Unit

filled up by Interface

Figure 10: Conversion of the Loop Object Type to BACnet

Page 119
prEN ### 1997

6.8 Multistate Object

EIB-Property ID Type Conversion Optional / Mandatory/
Writable

EIB BACnet

BACnet Property ID If not existing in EIB

PID_OBJECT_TYPE M Object_Type
PID_OBJECT_NAME O M Object_Name always ” ”
PID_DESCRIPTION O Description
PID_PRESENT_VAL Type M / W Present Value
PID_STATUS Interface O M Status_Flags

Event_State
Out_Of_Service

NORMAL
NORMAL
FALSE

PID_PRIORITY Interface O (M) Priority_Array filled up by Interface
PID_DEFAULT Type O (M) Relinquish_Default always Zero
PID_PRIORITY_VALUE Interface O (M) Priority_Value filled up by Interface
PID_EVT_ALARM_CTR Table O Event_Enable

Limit_Enable
set by Interface

PID_COMM_VALUE O
PID_STATE_COUNT Interface O (M) Number of States filled up by Interface
PID_TOTAL_RUN_TIME Type

Interface
O Elapsed Active Time

Time Of Active Time
Reset

set by Interface

Figure 11: Conversion of the Multistate Object Type to BACnet

7 Type Conversions

7.1 EIB_Polarity / BACnetPolarity

Polarity EIB (uchar) BACnet (Enum)
normal 0 0
reverse 1 1

Figure 12: Polarity

7.2 Conversion of EIB State (read) to BACnet Program State

EIB_Load (read) EIB_Run (read) BACnetProgramState (read) BACnet(Enum)
Unloaded idle 0
Loading loading 1
Loaded Running running 2
Loaded Ready waiting 3
Loaded Terminated halted 4
-- -- unloading 5

Figure 13: EIB State (read) to BACnet Program_State

7.3 Conversion of EIB State (write) to BACnet Program Request)

EIB_State EIB_Load EIB_Run BACnetProgramRequest BACnet(Enum)
Load complete ready 0
Start load load 1

Loaded Restart run 2
Loaded Stop halt 3
Loaded Restart restart 4
Unload Unload unload 5

Figure 14: EIB State (write) to BACnet Program_State

Page 120
prEN ### 1997

7.4 EIB_ObjectPropertyReference

EIB_ObjectPropertyReference is a PT_UNSIGNED_LONG. It corresponds to the
BACnetObjectPropertyReference.

O c te t 0 O c te t 1 O c te t 2 O c te t 3

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
ph

ys
ic

al
 a

dd
re

ss

ob
je

ct
 in

de
x

PI
D

Figure 15

7.5 EIB_EngineeringUnits

UNIT of MEASUREMENT SYMBOL ENGINEERING
UNIT

EIB CODE BACnet CODE

temperature EIB_value_temp °C 5001 62

temperature difference EIB_value_temd K 5002 63

temperature gradient EIB_value_temg K/h 5003 91

intensity of light EIB_value_lux Lux 5004 37

wind speed EIB_value_wsp m/s 5005 74

air pressure EIB_value_pres Pa 5006 53

time difference EIB_value_time1 s 5010 73

time difference EIB_value_time2 ms 5011

voltage EIB_value_volt mV 5020 124

electrical current EIB_value_curr mA 5021 2

relative brightness EIB_scaling_lux % 6001 98

relative humidity EIB_scaling_wet % 6002 98

wind direction EIB_scaling_wdr ° 6003 90

acceleration EIB_value_acceleration m s-2 9000

acceleration, angular EIB_value angular
Acceleration

rad s-2 9001

activation energy EIB_value_activation Energy J mol-1 9002

activity (radioactive) EIB_value_activity s-1 9003

amount of substance EIB_value_mol mol 9004

amplitude EIB_value_amplitude (unit as
appropriate)

9005

angle, radiant EIB_value_angleRad rad 9006

angle, degree EIB_value_angleDeg °(degrees) 9007 90

angular momentum EIB_value_angular
Momentum

J s 9008

angular velocity EIB_value_angular Velocity rad s-1 9009

area EIB_value_area m2 9010 0

capacitance EIB_value_capacitance F 9011

charge density (surface) EIB_value_charge
DensitySurface

C m-2 9012

charge density (volume) EIB_value_charge
DensityVolume

C m-3 9013

compressibility EIB_value_ compressibility m2 N-1 9014

conductance EIB_value_ conductance S = ΩΩ-1 9015

Page 121
prEN ### 1997

conductivity, electrical EIB_value_ electrical
Conductivity

S m-1 9016

density EIB_value_density kg m-3 9017

electric charge EIB_value_electric Charge C 9018

electric current EIB_value_electric Current A 9019 3

electric current density EIB_value_electric
CurrentDensity

A m-2 9020

electric dipole moment EIB_value_electric
DipoleMoment

C m 9021

electric displacement EIB_value_electric
Displacement

C m-2 9022

electric field strength EIB_value_electric
FieldStrength

V m-1 9023

electric flux EIB_value_electric Flux C 9024

electric flux density EIB_value_electric
FluxDensity

C m-2 9025

electric polarization EIB_value_electric
Polarization

C m-2 9026

electric potential EIB_value_electric Potential V 9027 5

electric potential
difference

EIB_value_electric
PotentialDifference

V 9028 5

electromagnetic moment EIB_value_ electromagnetic
Moment

A m2 9029

electromotive force EIB_value_
electromotiveForce

V 9030 5

energy EIB_value_energy J 9031

force EIB_value_force N 9032

frequency EIB_value_frequency Hz = s-1 9033

frequency,angular
(pulsatance)

EIB_value_angular
Frequency

rad s-1 9034

heat capacity EIB_value heat Capacity J K-1 9035

heat flow rate EIB_value_heatFlow Rate W 9036 47

heat,quantity of EIB_value_heat Quantity J 9037

impedance EIB_value_ impedance ΩΩ 9038 4

length EIB_value_length m 9039 31

light,quantity of EIB_value_light Quantity J or lm s 9040

luminance EIB_value_luminance cd m-2 9041

luminous flux EIB_value_luminous Flux lm 9042 36

luminous intensity EIB_value_luminous
Intensity

cd 9043

magnetic field strength EIB_value_magnetic
FieldStrength

A m-1 9044

magnetic flux EIB_value_magnetic Flux Wb 9045

magnetic flux density EIB_value_magnetic
FluxDensity

T 9046

magnetic moment EIB_value_magnetic Moment A m2 9047

magnetic polarization EIB_value_magnetic
Polarization

T 9048

magnetization EIB_value_ magnetization A m-1 9049

magnetomotive force EIB_value_
magnetomotiveForce

A 9050 3

mass EIB_value_mass kg 9051 39

mass flux EIB_value_massFlux kg s-1 9052

momentum EIB_value_ momentum N s-1 9053

phase angle, radiant EIB_value_phase AngleRad rad 9054

phase angle, degrees EIB_value_phase AngleDeg ° (degrees) 9055

power EIB_value_power W 9056 47

power factor (cos ΦΦ) EIB_value_power Factor 9057

pressure EIB_value_pressure Pa (= N m-2) 9058 53

reactance EIB_value_reactance ΩΩ 9059 4

resistance EIB_value_resistance ΩΩ 9060 4

resistivity EIB_value_resistivity ΩΩ m 9061

self inductance EIB_value_self Inductance H 9062

Page 122
prEN ### 1997

solid angle EIB_value_solidAngle sr 9063

sound intensity EIB_value_sound Intensity W m-2 9064

speed EIB_value_speed m s-1 9065 74

stress EIB_value_stress Pa (= N m-2) 9066 53

surface tension EIB_value_surface Tension N m-1 9067

temperature,common EIB_value_common
temperature

°C 9068 62

temperature (absolute) EIB_value_absolute
temperature

K 9069 63

temperature difference EIB_value_
temperatureDifference

K 9070 63

thermal capacity EIB_value_ thermal Capacity J K-1 9071

thermal conductivity EIB_value_thermal
Conductivity

W m-1 K-1 9072

thermoelectric power EIB_value_
thermoelectricPower

V K-1 9073

time EIB_value_time s 9074 73

torque EIB_value_torque N m 9075

volume EIB_value_volume m3 9076 80

volume flux EIB_value_volume Flux m3 s-1 9077

weight EIB_value_weight N 9078

work EIB_value_work J 9079

Figure 16: Conversion of Engineering Units

7.6 Conversion of EIB Status to BACnet

EIB-Status BACnet Property
Common (Bit 4-7)
- (Bit 7) in-alarm -> Status_Flags IN_ALARM
- (Bit 6) fault -> FAULT
- (Bit 5) overridden OVERRIDDEN
- (Bit 4) maintenance/

out-of-service
Status_Flags,

Out_Of_Service
OUT_OF_SERVICE

-> in-alarm (Bit 0-1) 0 warn. high
1 alarm high / overflow
2 warn low
3 alarm low

-> fault (Bit 2-3) 0 undefined Event_State
1 out of range
2 open-loop
3 shorted-loop

Figure 17: Splitting of EIB Status

7.7 Conversion of EIB Event to BACnet

Bitnr BACnet Property
0 to warn. high Limit_Enable High_Limit_Enable
1 to alarm high / overflow
2 to warn low Limit_Enable Low_Limit_Enable
3 to alarm low
4 to normal Event_Enable TO-NORMAL
5 to fault Event_Enable TO-FAULT
6
7

Figure 18:Splitting of EIN Event/Alarm Control

Page 123
prEN ### 1997

7.8 Conversion of EIB File Flags to BACnet

EIB-Fileflags Bitnr BACnet Property
0 Read enable Read_Only
1 Write enable Read_Only 0=read only
2 Archive Archive 1=save
3
4
5
6
7

Figure 19: Splitting of EIB Flags for File Objects

